
Fujitsu Server PRIMERGY Performance Report PRIMERGY RX1330 M4

This document provides an overview of benchmarks executed on the Fujitsu Server PRIMERGY RX1330 M4.

Explaines PRIMERGY RX1330 M4 performance data in comparison to other PRIMERGY models. In addition to the benchmark results, the explanation for each benchmark and benchmark environment are also included.

Contents

Technical data	3
SPEC CPU2017	7
Benchmark description	7
Benchmark environment	9
Benchmark results	11
STREAM	15
Benchmark description	15
Benchmark environment	
Benchmark results	17
SPECpower_ssj2008	19
Benchmark description	19
Benchmark environment	
Benchmark results	21
Difference in score caused by OS & JVM version	
SPECjbb2015	23
Benchmark description	23
Benchmark environment	25
Benchmark results	
Disk I/O: Performance of storage media	28
Benchmark description	
Benchmark environment	
Benchmark results	
Storage media performance	
OLTP-2	
Benchmark description	
Benchmark environment	
Benchmark results	
VMmark V3	40
Benchmark description	
Benchmark environment	
Benchmark results	
Benchmark results	
Literature	48

Technical data

PRIMERGY RX1330 M4

Decimal prefixes according to the SI standard are used for storage capacity in this white paper (e.g. 1 $GB = 10^{\circ}$ bytes). In contrast, these prefixes should be interpreted as binary prefixes (e.g. 1 $GB = 2^{30}$ bytes) for the capacities of caches and memory modules. Separate reference will be provided for any further exceptions where applicable.

Model	PRIMERGY RX1330 M4
Model versions	PY RX1330 M4 4 x 3.5' PY RX1330 M4 4 x 2.5' PY RX1330 M4 4 x 2.5' NVMe PY RX1330 M4 10 x 2.5'
Form factor	Rack server
Chipset	Intel C246
Number of sockets	1
Number of processors orderable	1
Processor type	Intel Celeron G4900 Intel Celeron G4930 Intel Pentium Gold G5400 Intel Pentium Gold G5420 Intel Core i3-8100 Intel Core i3-9100 Intel Xeon Processor E-2100 Product Family Intel Xeon Processor E-2200 Product Family
Number of memory slots	4
Maximum memory configuration	128 GB
Onboard HDD controller	Controller with RAID 0, RAID 1 or RAID 10 for up to 4 SATA HDDs
PCI slots	2 × PCI-Express 3.0 x 8 1 × PCI-Express 3.0 x 4
Max. number of internal hard disks	PY RX1330 M4 4 x 3.5' : 4 × 3.5" PY RX1330 M4 4 x 2.5' : 8 × 2.5" PY RX1330 M4 4 x 2.5' NVMe : 4 × 2.5" (NVMe) + 4 × 2.5" (SAS) PY RX1330 M4 10 x 2.5' : 2.5" × 10

Processor	Cores	Threads	Cache	Rated Frequency	Max. Turbo Frequency	Max. Memory Frequency	TDP
			[MB]	[Ghz]	[Ghz]	[MHz]	[Watt]
November 2018 rele	eased						
Celeron G4900	2	2	2	3.1		2,400	54
Pentium Gold G5400	2	4	4	3.7		2,400	58
Core i3-8100	4	4	6	3.6		2,400	65
Xeon E-2124	4	4	8	3.3	4.3	2,666	71
Xeon E-2124G	4	4	8	3.4	4.5	2,666	71
Xeon E-2126G	6	6	12	3.3	4.5	2,666	80
Xeon E-2134	4	8	8	3.5	4.5	2,666	71
Xeon E-2136	6	12	12	3.3	4.5	2,666	80
Xeon E-2144G	4	8	8	3.6	4.5	2,666	71
Xeon E-2146G	6	12	12	3.5	4.5	2,666	80
Xeon E-2174G	4	8	8	3.8	4.7	2,666	71
Xeon E-2176G	6	12	12	3.7	4.7	2,666	80
Xeon E-2186G	6	12	12	3.8	4.7	2,666	95
November 2019 rele	eased						
Celeron G4930	2	2	2	3.2		2,400	54
Pentium Gold G5420	2	4	4	3.8		2,400	54
Core i3-9100	4	4	6	3.6	4.2	2,400	65
Xeon E-2224	4	4	8	3.4	4.6	2,666	71
Xeon E-2224G	4	4	8	3.5	4.7	2,666	71
Xeon E-2226G	6	6	12	3.4	4.7	2,666	80
Xeon E-2234	4	8	8	3.6	4.8	2,666	71
Xeon E-2236	6	12	12	3.4	4.8	2,666	80
Xeon E-2244G	4	8	8	3.8	4.8	2,666	71
Xeon E-2246G	6	12	12	3.6	4.8	2,666	80
Xeon E-2274G	4	8	8	4.0	4.9	2,666	83
Xeon E-2276G	6	12	12	3.8	4.9	2,666	80
Xeon E-2278G	8	16	16	3.4	5.0	2,666	80
Xeon E-2286G	6	12	12	4.0	4.9	2,666	95
Xeon E-2288G	8	16	16	3.7	5.0	2,666	95

Performance Report PRIMERGY RX1330 M4

All the processors of the Intel Xeon Processor E-2100 Product Family and the Intel Xeon Processor E-2200 Product Family, and Core i3-9100 processor, that can be ordered with the PRIMERGY RX1330 M4 support Intel® Turbo Boost Technology 2.0. This technology allows you to operate the processor with higher frequencies than the nominal frequency. "Max. Turbo Frequency" listed in the processor table is the theoretical maximum frequency with only one active core per processor. The maximum frequency that can actually be achieved depends on the number of active cores, the current consumption, electrical power consumption, and the temperature of the processor.

As a matter of principle, Intel does not guarantee that the maximum turbo frequency can be reached. This is related to manufacturing tolerances, which result in a variance regarding the performance of various examples of a processor model. The range of the variance covers the entire scope between the nominal frequency and the maximum turbo frequency.

The turbo functionality can be set via a BIOS option. Fujitsu generally recommends leaving the "Turbo Mode" option set at the standard setting of "Enabled", as performance is substantially increased by the higher frequencies. However, since the higher frequencies depend on general conditions and are not always guaranteed, it can be advantageous to disable the "Turbo Mode" option for application scenarios with intensive use of AVX instructions and a high number of instructions per clock unit, as well as for those that require constant performance or lower electrical power consumption.

Memory modules (s	Memory modules (since system release)							
Memory module	Capacity [GB]	Ranks	Bit width of the memory chips	Frequ ency [MHz]	Low voltage	Load reduced	Registered	ECC
4 GB (1 x 4 GB) 1Rx8 DDR4-2666 U ECC	4	1	8	2,666				~
8 GB (1 x 8 GB) 1Rx8 DDR4-2666 U ECC	8	1	8	2,666				~
16 GB (1 x 16 GB) 2Rx8 DDR4-2666 U ECC	16	2	8	2,666				~
32 GB (1 x 32 GB) 2Rx8 DDR4-2666 U ECC	32	2	8	2,666				~

Power supplies (since system release)	Max. number
Standard PSU 300W	1
Modular PSU 450W platinum hp	2

Some components may not be available in all countries or sales regions.

Detailed technical information is available in the data sheet PRIMERGY RX1330 M4.

SPEC CPU2017

Benchmark description

SPECcpu2017 is a benchmark which measures the system efficiency with integer and floating-point operations. It consists of an integer test suite (SPECrate 2017 Integer or SPECspeed 2017 Integer) containing 10 applications and a floating-point test suite (SPECrate 2017 Floating Point or SPECspeed 2017 Floating Point) containing 14 applications. Both test suites are extremely computation-intensive and concentrate on the CPU and the memory. Other components, such as disk I/O and network, are not measured by this benchmark.

SPECcpu2017 is not tied to a specific operating system. The benchmark is available as source code and is compiled before the actual measurement. The compiler version used and its optimization settings also affect the measurement results.

SPECcpu2017 contains two different performance measurement methods: The first method (SPECspeed 2017 Integer or SPECspeed 2017 Floating Point) determines the time which is required to process a single task. The second method (SPECrate 2017 Integer or SPECrate 2017 Floating Point) determines the throughput, i.e. the number of tasks that can be handled in parallel. The performance per power can also be measured during performance measurements, by measuring the system power with a power meter.

Both methods are also divided into two measurement runs, "base" and "peak", which differ in the use of compiler optimization. When publishing the results, the base values are always used and the peak values are optional.

Benchmark	Number of single benchmarks	Arithmetic	Compiler optimization	Measure	ement result	
SPECspeed2017_int_peak	10	Integer	Aggressive	Speed	Performance	
SPECspeed2017_int_energy_peak			(peak)		Power efficiency	
SPECspeed2017_int_peak	10		Conservative		Performance	
SPECspeed2017_int_energy_peak			(base)		Power efficiency	
SPECspeed2017_int_peak	10		Aggressive	Throughput	Performance	
SPECspeed2017_int_energy_peak				(peak)		Power efficiency
SPECspeed2017_int_peak	10	10	Conservative (base)		Performance	
SPECspeed2017_int_energy_peak					Power efficiency	
SPECspeed2017_int_peak	10	rtouting	00	Speed	Performance	
SPECspeed2017_int_energy_peak		point			Power efficiency	
SPECspeed2017_int_peak	10		Conservative		Performance	
SPECspeed2017_int_energy_peak			(base)		Power efficiency	
SPECspeed2017_int_peak	13		Aggressive	Throughput	Performance	
SPECspeed2017_int_energy_peak				(peak)		Power efficiency
SPECspeed2017_int_peak	13		Conservative		Performance	
SPECspeed2017_int_energy_peak			(base)		Power efficiency	

The measurement results are the geometric average from normalized ratio values which have been determined for individual benchmarks. The geometric average – in contrast to the arithmetic average – means that there is a weighting in favor of the lower individual results. "Normalized" means that the measurement is how fast the test system is compared to a reference system. A value of "1" has been defined to be the SPECspeed2017_int_base, SPECrate2017_int_base, SPECspeed2017_fp_base, and SPECrate2017_fp_base results of the reference system. For example, a SPECspeed2017_int_base value of "2" means that the measuring system has handled this benchmark twice as fast as the reference system. A SPECrate2017_fp_base value of "4" means that the measuring system has handled this benchmark about 4/[# base copies] times faster than the reference system. "# base copies" specifies how many parallel instances of the benchmark have been executed.

Not every SPECcpu2017 measurement is submitted by us for publication at SPEC. This is why the SPEC web pages do not have every result. As we archive the log files for all measurements, we can prove the correct implementation of the measurements at any time.

Benchmark environment

System Under Test	(SUT)
Hardware	
• Model	PRIMERGY RX1330 M4
• Processor	Intel Celeron G4900 Intel Celeron G4930
	Intel Pentium Gold G5400
	Intel Pentium Gold G5420
	Intel Core i3-8100
	Intel Core i3-9100
	Intel Xeon Processor E-2100 Product Family
	Intel Xeon Processor E-2200 Product Family
Memory	4 × 16 GB (1 x 16 GB) 2Rx8 DDR4-2666 U ECC
Software	
 BIOS settings 	Celeron® G4900:
	SPECspeed2017_int:
	DCU Streamer Prefetcher = Disabled
	 DDR PowerDown and idle counter = PCODE CState Pre-Wake = Disabled
	Package C-State Un-demotion = Enabled
	• REFRESH_2X_MODE = 1- Enabled for WARM or HOT
	Xeon E-2186G:
	SPECspeed2017_int:
	DCU Streamer Prefetcher = Disabled
	• DDR PowerDown and idle counter = PCODE
	CState Pre-Wake = Disabled
	Package C-State Un-demotion = Enabled
	REFRESH_2X_MODE = 1- Enabled for WARM or HOT
	SPECspeed2017_fp
	• Energy Efficient Turbo = Disabled
	SPECrate2017_int:
	 Hardware Prefetcher = Disabled
	Adjacent Cache Line Prefetch = Disabled
	• VT-d = Disabled
	• Fan Control = Full
	• Race To Halt (RTH) = Disabled
	• DMI Link ASPM Control = L0s
	REFRESH_2X_MODE = 2- Enabled HOT only
	SPECrate2017_fp
	• Hyper-Threading = Disabled
	 Software Guard Extensions (SGX) = Disabled
	• Fan Control = Full
	Race To Halt (RTH) = Disabled
	Energy Efficient Turbo = Disabled

	DMI Link ASPM Control = Disabled
	Package C-State Un-demotion = Enabled
	Native PCIE Enable = Disabled
	Xeon E-2288G:
	SPECspeed2017_int:
	 Adjacent Cache Line Prefetch = Disabled
	CState Pre-Wake = Disabled
	DCU Streamer Prefetcher = Disabled
	DDR PowerDown and idle counter = PCODE
	 Energy Efficient Turbo = Disabled Enhanced C-states = Disabled
	 Intel Virtualization Technology = Disabled
	 Native ASPM = Disabled
	 Package C-State Un-demotion = Enabled
	 REFRESH_2X_MODE = 1- Enabled for WARM or HOT
	SPECspeed2017_fp
	• Energy Efficient Turbo = Disabled
	• Fan Control = Full
	• Hyper Threading = Disabled
	 SW Gurad Extension (SGX) = Enabled
	SPECrate2017_int:
	 Adjacent Cache Line Prefetch = Disabled
	• C states = Disabled
	• Fan Control = Full
	Hardware Prefetcher = Disabled
	Intel Virtualization Technology = Disabled
	 Intel Speed Shift Technology = Disabled
	SPECrate2017_fp
	• AES = Disabled
	• DCU Streamer Prefetcher = Dsiabled
	• Fan Control = Full
	Hyper-Threading = Disabled
	• Package C State Limit = C0
 Operating system 	SUSE Linux Enterprise Server 15 SP4 5.14.21-150400.22-default
Operating system settings	Stack size set to unlimited using "ulimit -s unlimited"
• Compiler	C/C++: Version 2023.0 of Intel C/C++ Compiler for Linux
	Fortran: Version 2023.0 of Intel Fortran Compiler for Linux

Benchmark results

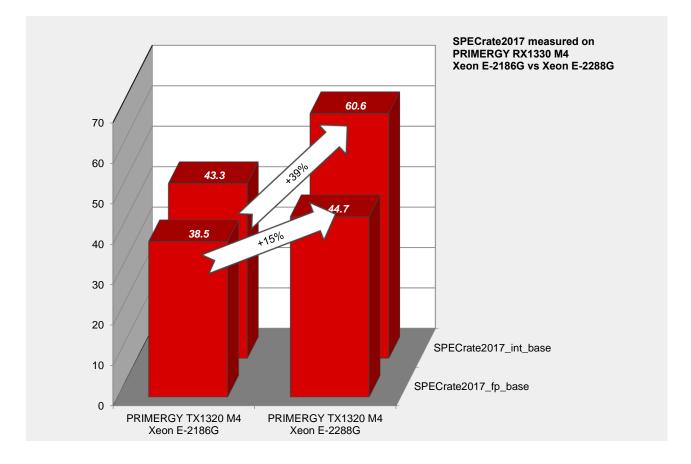
For processors, the benchmark results depend primarily on the size of the processor cache, the support for Hyper-Threading, the number of processor cores, and the processor frequency. In the case of processors with Turbo mode, the number of cores which are loaded by the benchmark determines the maximum processor frequency that can be achieved. In the case of single-threaded benchmarks, which mainly load only one core, the maximum processor frequency that can be achieved is higher than with multi-threaded benchmarks.

Results with "est." are estimated values.

Processor	SPECspeed2017 int_base	SPECspeed2017 int_peak	SPECrate2017 int_base	SPECrate2017 int_peak		
November 2018 relea	November 2018 released					
Celeron G4900	5.69		8.69 est.	9.33 est.		
Pentium Gold G5400	7.06 est.		12.7 ^{est.}	13.6 ^{est.}		
Core i3-8100	7.97 est.		21.9 est.	23.3 est.		
Xeon E-2124	9.39 est.		22.7 est.	24.0 est.		
Xeon E-2124G	9.78 est.		23.7 est.	25.0 est.		
Xeon E-2126G	10.1 est.		34.5 est.	36.7 est.		
Xeon E-2134	10.0 est.		29.6 est.	31.6 est.		
Xeon E-2136	10.3 est.		42.8 est.	45.9 est.		
Xeon E-2144G	10.1 est.		29.8 est.	31.8 est.		
Xeon E-2146G	10.3 est.		41.4 est.	44.4 est.		
Xeon E-2174G	10.4 est.		30.3 est.	32.3 est.		
Xeon E-2176G	10.7 est.		42.9 est.	46.0 est.		
Xeon E-2186G	10.7		43.3	46.6		
November 2019 relea	ised					
Celeron G4930	5.89 est.	6.1 est.	8.88 est.	9.51 est.		
Pentium Gold G5420	7.39 est.	7.57 est.	12.9 est.	13.9 est.		
Core i3-9100	9.89 est.	9.88 est.	26.1 est.	27.2 est.		
Xeon E-2224	10.9 est.	10.9 est.	28.1 est.	29.1 est.		
Xeon E-2224G	11.1 est.	11.1 est.	29.1 est.	30.1 est.		
Xeon E-2226G	11.5 est.	11.5 est.	40.7 est.	42.4 est.		
Xeon E-2234	11.6 est.	11.6 ^{est.}	34.9 est.	36.6 est.		
Xeon E-2236	11.8 est.	11.9 est.	45.7 est.	48.1 est.		
Xeon E-2244G	11.6 est.	11.6 ^{est.}	35.2 est.	36.9 est.		
Xeon E-2246G	11.8 est.	11.9 est.	46.3 est.	48.9 est.		
Xeon E-2274G	11.7 est.	11.8 est.	34.6 est.	36.4 est.		
Xeon E-2276G	12.0 est.	12 est.	46.6 est.	49.1 est.		
Xeon E-2278G	12.3 est.	12.4 ^{est.}	57.7 ^{est.}	61.0 ^{est.}		
Xeon E-2286G	12.1 est.	12 est.	47.9 est.	50.5 est.		
Xeon E-2288G	12.3	12.4 est.	60.6	63.9 est.		

On November 13, 2018, the PRIMERGY RX1330 M4 with Xeon E-2186G processor was ranked first (tie) in the 1-socket Xeon E server systems category for the benchmark SPECspeed2017 int_base.

On November 1, 2019, the PRIMERGY RX1330 M4 with Xeon E-2288G processor was ranked first in the 1-socket Xeon E server systems category for the benchmark SPECspped2017 int_base.


Performance Report PRIMERGY RX1330 M4

Processor	SPECspeed2017 fp_base	SPECspeed2017 fp_peak	SPECrate2017 fp_base	SPECrate2017 fp_peak
November 2018 relea	ased			
Celeron G4900	11.7		11.5 est.	11.7 est.
Pentium Gold G5400	13.5 est.		15.4 est.	15.6 est.
Core i3-8100	23.2 est.		26.4 est.	26.8 est.
Xeon E-2124	26.0 est.		29.5 est.	29.9 est.
Xeon E-2124G	26.6 est.		30.4 est.	30.9 est.
Xeon E-2126G	31.5 ^{est.}		37.4 ^{est.}	38.0 est.
Xeon E-2134	26.8 est.		30.5 est.	31.0 est.
Xeon E-2136	31.9 est.		38 est.	38.6 est.
Xeon E-2144G	26.7 est.		30.7 est.	31.2 est.
Xeon E-2146G	31.7 est.		37.1 ^{est.}	37.8 est.
Xeon E-2174G	27.2 est.		31.0 est.	31.5 est.
Xeon E-2176G	32.1 ^{est.}		38.2 est.	38.9 est.
Xeon E-2186G	32.1		38.5	39.1
November 2019 relea	ased		•	
Celeron G4930	11.9 est.	12.1 est.	11.9 est.	12.1 est.
Pentium Gold G5420	13.8 est.	14.1 est.	15.7 est.	16.0 est.
Core i3-9100	24.2 est.	24.8 est.	27.9 est.	28.5 est.
Xeon E-2224	26.6 est.	27.4 est.	30.7 est.	31.4 est.
Xeon E-2224G	27.1 ^{est.}	27.8 est.	31.5 ^{est.}	32.2 est.
Xeon E-2226G	31.9 est.	32.7 est.	37.6 est.	38.5 est.
Xeon E-2234	27.3 est.	28.0 est.	31.6 ^{est.}	32.3 est.
Xeon E-2236	32.0 est.	32.7 est.	37.8 est.	38.7 est.
Xeon E-2244G	27.5 est.	28.2 est.	31.9 est.	32.5 est.
Xeon E-2246G	32.1 ^{est.}	32.9 est.	37.9 est.	38.9 est.
Xeon E-2274G	27.2 est.	27.9 est.	31.5 est.	32.1 est.
Xeon E-2276G	32.7 est.	33.5 est.	38.7 est.	39.5 est.
Xeon E-2278G	35.9 est.	36.8 est.	43.2 est.	44.3 est.
Xeon E-2286G	32.9 est.	33.6 est.	39.2 est.	40.0 est.
Xeon E-2288G	36.4	37.3 est.	44.7	45.7 est.

On November 13, 2018, the PRIMERGY RX1330 M4 with Xeon E-2186G processor was ranked first(tie) in the 1-socket Xeon E server systems category for the benchmark SPECspeed2017 fp_base.

The following two diagrams illustrate the comparison of SPECrate2017 on Xeon E-2186G and Xeon E-2288G measured with PRIMERGY RX1330 M4, in their respective most performance configurations.

STREAM

Benchmark description

STREAM is a synthetic benchmark that has been used for many years to determine memory throughput and was developed by John McCalpin during his professorship at the University of Delaware. Today STREAM is supported at the University of Virginia, where the source code can be downloaded in either Fortran or C. STREAM continues to play an important role in the HPC environment in particular. It is for example an integral part of the HPC Challenge benchmark suite.

The benchmark is designed in such a way that it can be used both on PCs and on server systems. The unit of measurement of the benchmark is GB/s, i.e. the number of gigabytes that can be read and written per second.

STREAM measures the memory throughput for sequential accesses. These can generally be performed more efficiently than accesses that are randomly distributed on the memory, because the processor caches are used for sequential access.

Before execution the source code is adapted to the environment to be measured. Therefore, the size of the data area must be at least 12 times larger than the total of all last-level processor caches so that these have as little influence as possible on the result. The OpenMP program library is used to enable selected parts of the program to be executed in parallel during the runtime of the benchmark. This provides optimal load distribution for the available processor cores.

In the STREAM benchmark, a data area consisting of 8-byte elements is continuously copied to four operation types. Arithmetic operations are also performed on operation types other than COPY.

Arithmetics type	Arithmetics	Bytes per step	Floating-point calculation per step
COPY	a(i) = b(i)	16	0
SCALE	a(i) = q × b(i)	16	1
SUM	a(i) = b(i) + c(i)	24	1
TRIAD	$a(i) = b(i) + q \times c(i)$	24	2

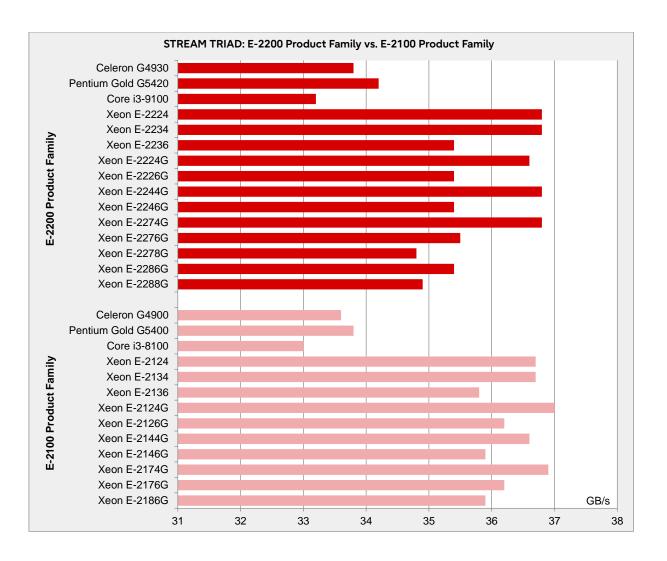
The throughput is output in GB/s for each type of calculation. The differences between the various values are usually only minor on modern systems. In general, only the determined TRIAD value is used as a comparison.

The measured results primarily depend on the clock frequency of the memory modules. The processors influence the arithmetic calculations.

In this chapter, throughputs are indicated as a power of 10. (1 GB/s = 10⁹ Byte/s)

Benchmark environment

System Under Test (S	UT)			
Hardware				
• Model	PRIMERGY RX1330 M4			
Processor	Intel Celeron G4900			
	Intel Celeron G4930			
	Intel Pentium Gold G5400			
	Intel Pentium Gold G5420			
	Intel Core i3-8100			
	Intel Core i3-9100			
	Intel Xeon Processor E-2100 Product Family			
	Intel Xeon Processor E-2200 Product Family			
• Memory	4 × 16 GB (1 x 16 GB) 2Rx8 DDR4-2666 U ECC			
Software				
 BIOS settings 	• Fan Control = Full			
 Operating system 	SUSE Linux Enterprise Server 15 (x86_64)			
• Compiler	Version 18.0.2.199 of Intel C/C++ Compiler for Linux			
• Benchmark	Stream.c Version 5.10			

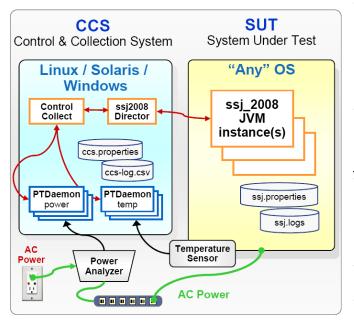

Some components may not be available in all countries or sales regions.

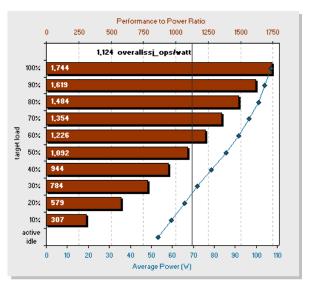
Benchmark results

Results with "est." are estimated values.

Processor	Memory Frequency	Max. Memory Bandwidth	Cores	Processor Frequency	TRIAD
	[MHz]	[GB/s]		[GHz]	[GB/s]
November 2018 relea	sed				
Celeron G4900	2,400	37.5	2	3.1	33.6 ^{est.}
Pentium Gold G5400	2,400	37.5	2	3.7	33.8 est.
Core i3-8100	2,400	37.5	4	3.6	33.0 est.
Xeon E-2124	2,666	41.6	4	3.3	36.7 est.
Xeon E-2124G	2,666	41.6	4	3.4	37.0 est.
Xeon E-2126G	2,666	41.6	6	3.3	36.2 est.
Xeon E-2134	2,666	41.6	4	3.5	36.7 est.
Xeon E-2136	2,666	41.6	6	3.3	35.8 est.
Xeon E-2144G	2,666	41.6	4	3.6	36.6 est.
Xeon E-2146G	2,666	41.6	6	3.5	35.9 est.
Xeon E-2174G	2,666	41.6	4	3.8	36.9 est.
Xeon E-2176G	2,666	41.6	6	3.7	36.2 est.
Xeon E-2186G	2,666	41.6	6	3.8	35.9 est.
November 2019 relea	sed				
Celeron G4930	2,400	37.5	2	3.2	33.8 est.
Pentium Gold G5420	2,400	37.5	2	3.8	34.2 est.
Core i3-9100	2,400	37.5	4	3.6	33.2 est.
Xeon E-2224	2,666	41.6	4	3.4	36.8 est.
Xeon E-2224G	2,666	41.6	4	3.5	36.6 ^{est.}
Xeon E-2226G	2,666	41.6	6	3.4	35.4 est.
Xeon E-2234	2,666	41.6	4	3.6	36.8 est.
Xeon E-2236	2,666	41.6	6	3.4	35.4 est.
Xeon E-2244G	2,666	41.6	4	3.8	36.8 est.
Xeon E-2246G	2,666	41.6	6	3.6	35.4 est.
Xeon E-2274G	2,666	41.6	4	4.0	36.8 est.
Xeon E-2276G	2,666	41.6	6	3.8	35.5 est.
Xeon E-2278G	2,666	41.6	8	3.4	34.8 est.
Xeon E-2286G	2,666	41.6	6	4.0	35.4 est.
Xeon E-2288G	2,666	41.6	8	3.7	34.9 est.

The following diagram shows the comparison of STREAM TRIAD on the E-2200 Product Family and its predecessor, the E-2100 Product Family measured with PRIMERGY RX1330 M4.


SPECpower_ssj2008


Benchmark description

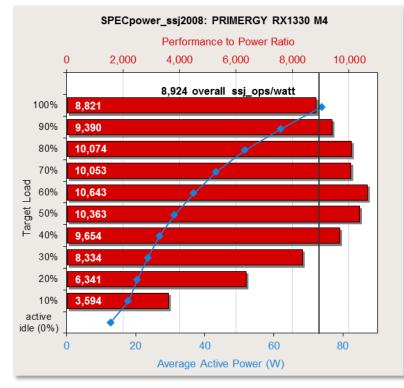
SPECpower_ssj2008 is the first industry-standard SPEC benchmark that evaluates the power and performance characteristics of a server. With SPECpower_ssj2008 SPEC has defined standards for server power measurements in the same way they have done for performance.

The benchmark workload represents typical server-side Java business applications. The workload is scalable, multi-threaded, portable across a wide range of platforms, and easy to run. The benchmark tests CPUs, caches, the memory hierarchy, and scalability of symmetric multiprocessor systems (SMPs), as well as the implementation of Java Virtual Machine (JVM), Just In Time (JIT) compilers, garbage collection, threads, and some aspects of the operating system.

SPECpower_ssj2008 reports power consumption for servers at different performance levels - from 100% to "active idle" in 10% segments - over a set period of time. The graduated workload recognizes the fact that processing loads and power consumption on servers vary substantially over the course of days or weeks. To compute a powerperformance metric across all levels, measured transaction throughputs for each segment are added together and then divided by the sum of the average power consumed for each segment. The result is a figure of merit called "overall ssj_ops/watt". This ratio provides information about the energy efficiency of the measured server. The defined measurement standard enables customers to compare it with other configurations and servers measured with SPECpower_ssj2008. The diagram shows a typical graph of a SPECpower_ssj2008 result.

The benchmark runs on a wide variety of operating systems and hardware architectures and does not require extensive client or storage infrastructure. The minimum equipment for SPEC-compliant testing is two networked computers, plus a power analyzer and a temperature sensor. One computer is the System Under Test (SUT) which runs one of the supported operating systems and the IVM. The IVM provides the environment required to run the SPECpower_ssj2008 workload which is implemented in Java. The other computer is a "Control & Collection System" (CCS) which controls the operation of the benchmark and captures the power, performance, and temperature readings for reporting. The diagram provides an overview of the basic structure of the benchmark configuration and the various components.

Benchmark environment


System Under Test (SUT) Hardware PRIMERGY RX1330 M4 • Model Intel[®] Xeon[®] Platinum E-2176G Processor 2 × 8 GB (1 x 8 GB) 1Rx8 DDR4-2666 U ECC Memory 2 × Intel I210 Gigabit Network Connection Network interface Onboard SATA. controller • Disk subsystem 1 × M.2 SSD 240 GB, S26361-F5706-E240 1 × Standard PSU 300 W Power Supply Unit Software R1.1.0 BIOS ASPM Support = Force F0s BIOS settings Adjacent Cache Line Prefetch = Disabled Hardware Prefecher = Disabled DCU Streamer Prefetcher = Disabled Intel Virtualization Technology = Disabled SATA Port 1/2/3/4/5/7 = Disabled Turbo = Disabled Serial port = Disabled LAN2 = DisabledUSB Port Control = Enable internal ports only Software Guard Extensions = Disabled Network Stack = Disabled 1.60c Firmware Microsoft Windows Server 2012 R2 Standard Operating system Turn off hard disk after = 1 Minute Operating system settings Turn off display after = 1 Minute Minimum processor state = 0% Maximum processor state = 100% Using the local security settings console, "Lock pages in memory" was enabled for the user running the benchmark. The benchmark was started via Windows Remote Desktop Connection. SPECpower_ssj.props input.load_level.number_warehouses set to 12. Oracle Java HotSpot(TM) 64-Bit Server VM 18.9(build 11+28, mixed mode), version 11 • JVM -server -Xmn10500m -Xms12000m -Xmx12000m -XX:SurvivorRatio=1 IVM settings -XX:TargetSurvivorRatio=99 -XX:AllocatePrefetchDistance=256 -XX:AllocatePrefetchLines=4 -XX:ParallelGCThreads=2 -XX:InlineSmallCode=3900 -XX:MaxInlineSize=270 -XX:FreqInlineSize=2500 -XX:+UseLargePages -XX:+UseParallelOldGC -XX:AllocatePrefetchInstr=0 -XX:MinJumpTableSize=18 -XX:UseAVX=0

-XX:TenuredGenerationSizeSupplement=40 -XX:-UseFastStosb

Benchmark results

The PRIMERGY RX1330 M4 achieved the following result:

SPECpower_ssj2008 = 8,924 overall ssj_ops/watt

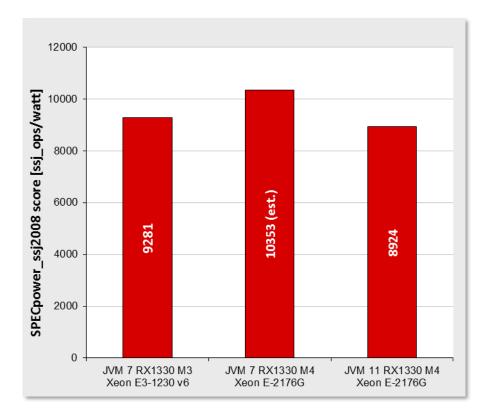
The adjoining diagram shows the results for the configuration described above. The red horizontal bars show the performance to power ratio in ssj_ops/watt (top x-axis) for each target load level on the y-axis of the diagram. The blue line shows the run of the curve for the average power consumption (bottom x-axis) at each target load level marked with a small rhombus. The black vertical line shows the benchmark result of 8,924 overall ssi_ops/watt for the PRIMERGY RX1330 M4. This is the quotient of the sum of the transaction throughputs for each load level and the sum of the average power consumed for each measurement interval.

The following table shows the

benchmark results for the throughput in ssj_ops, the power consumption in watts and the resulting energy efficiency, for each load level.

Performance		Power	Energy Efficiency
Target Load	ssj_ops	Average Power (W)	ssj_ops/watt
100%	651,586	73.9	8,821
90%	582,666	62.1	9,390
80%	519,605	51.6	10,074
70%	455,039	43.3	10,053
60%	391,263	36.8	10,643
50%	322,940	31.2	10,363
40%	259,677	26.9	9,654
30%	195,508	23.5	8,334
20%	130,148	20.5	6,341
10%	64,423	17.9	3,594
Active Idle	0	12.8	0
		Σ ss	j_ops / Σ power = 8,924

Difference in score caused by OS & JVM version


The SPECpower_ssj2008 score differs about 10% depending on the OS used in the system. The OS itself has an influence on performance. This means that the usable JVM version will be different depending on the OS type. Currently, the combinations Windows Server 2012 R2 & JVM7, Windows Server 2016 & JVM11, and Linux & JVM7 are used in Fujitsu and other vendors' submission results.

With appropriate OS settings and JVM options, the score increases in the order Linux & JVM7 \geq Windows Server 2012 R2 & JVM7 > Windows Server2016 & JVM11.

There are very few differences between Linux & JVM7 and Windows Server 2012. On the other hand, the score for the combination Windows Server 2016 & JVM11 is about 10% lower than the other two combinations' scores.

Under the SPECpower_ssj2008 rules, Windows Server 2016 (a relatively new OS) is not allowed to be measured with JVM7. Therefore, a later JVM version has to be used. Alt-rt.jar, a module included in JVM7, is related to accelerated collection type HashMap. However, the module has been deleted in JVM11. This is the main reason that the SPECpower_ssj2008 score measured with JVM11 is lower.

For this reason, the SPECpower_ssj2008 score measured with RX1330 M4 and JVM 11 is lower than the score measured with RX1330 M3 and JVM 7. However, this does not mean that RX1330 M4 is inferior to the predecessor system RX1330 M4 in terms of power efficiency. Fujitsu has verified that the SPECpower_ssj2008 score is higher than that for RX1330 M3 if the same JVM version is used.

SPECjbb2015

Benchmark description

The SPECjbb2015 benchmark is the latest version of a series of Java benchmarks following SPECjbb2000, SPECjbb2005 and SPECjbb2013. "jbb" stands for Java Business Benchmark. It evaluates the performance and the scalability of the Java business application environment.

The SPECjbb2015 is a benchmark modeled on the business activity of a world-wide supermarket company's IT infrastructure. The company has some supermarket stores, headquarters which manage them and suppliers who replenish their inventory. The following processing is performed based on the requests from customers and inside the company.

- POS (Point Of Sales) processing in supermarkets and processing of online purchases
- Issuing and managing coupons and discounts and customer payments management
- Managing receipts, invoices and customer databases
- Interaction with suppliers to replenish inventory
- Data mining operations to identify sale patterns and generate quarterly business reports

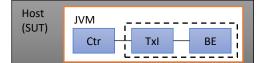
The SPECjbb2015 benchmark has two metrics:

- max-jOPS: This is the maximum transaction rate that can be achieved by the system under test while meeting the benchmark constraints. That is, it is a metric of the maximum processing throughput of the system.
- critical-jOPS: This is the geometric mean of the maximum transaction rates that can be achieved while meeting the constraints on the response time of 10, 25, 50, 75, and 100 milliseconds. In other words, it is a metric of the maximum processing throughput of the system under response time constraints.

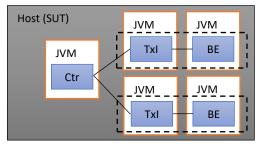
The SPECjbb2015 benchmark consists of the following three components: Backends (BE), which contains the business logic and data, Transaction Injector (TxI), which issues transaction requests, and Controller (Ctr), which controls them. Through the configuration of these components, the benchmark is divided into the following three categories:

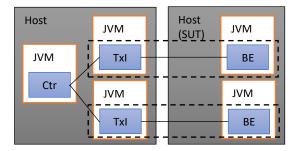
• SPECjbb2015 Composite

All components run on one JVM running on one host.

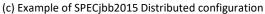

• SPECjbb2015 MultiJVM

All components exist on one host, but each runs on a separate JVM.


• SPECjbb2015 Distributed


The Backends exists on a separate host from those on which the other components are running. The Backends and the other components are connected by networks.

Results can not be compared between categories.



(a) Example of SPECjbb2015 Composite configuration

(b) Example of SPECjbb2015 MultiJVM configuration

The results of the SPECjbb2015 benchmark reflects not only the performance of the Java runtime environment (JRE) but also the performance of the operating system and the hardware underneath it. For the JRE, factors like the Java Virtual Machine (JVM), the Just-in-time (JIT) Compiler, garbage collection, and user thread affect the performance score, and for the hardware, it is affected by the performance of the processors, memory subsystem, and network. The SPECjbb2015 benchmark does not cover disk I/O performance.

The detailed specifications of the benchmark can be found at https://www.spec.org/jbb2015/.

Benchmark environment

PRIMERGY RX1330 M4 was configured for the SPECjbb2015 MultiJVM benchmark measurement.

System Under Test	System Under Test (SUT)				
Hardware					
• Model	PRIMERGY RX1330 M4				
Processor	1 × Intel [®] Xeon [®] E-2186G				
Memory	4 × 16 GB (1 x 16 GB) 2Rx8 DDR4-2666 U ECC				
Network interface	1 Gbit/s LAN				
• Disk subsystem	Disk: 1 × M.2. SSD 240 GB				
Software					
For measurement r	esult (1)				
BIOS settings	VT-d set to Disabled				
Operating system	SUSE Linux Enterprise Server 15 4.12.14-23-default				
Operating system	cpupower -c all frequency-set -g performance				
settings	echo 0 > /proc/sys/kernel/numa_balancing				
	echo 16000000 > /proc/sys/kernel/sched_latency_ns				
	echo 500000 > /proc/sys/kernel/sched_cfs_bandwidth_slice_us				
	echo 1500 > /proc/sys/vm/dirty_writeback_centisecs				
• JVM	Oracle Java SE 10.0.2				
• JVM settings	-server -Xms2g -Xmx2g -Xmn1536madd-modules=java.xml.bind - XX:+UseLargePages				
Controller (Ctr)	-XX:LargePageSizeInBytes=2m -XX:+UseParallelOldGC				
• JVM settings	-showversion -server -Xmx28g -Xms28g -Xmn27gadd-modules=java.xml.bind -XX:+UseParallelOldGC -XX:ParallelGCThreads=12 -XX:+AggressiveOpts - XX:+AlwaysPreTouch				
Backends (BE)	-XX:-UseÁdaptiveSizePolicy -XX:SurvivorRatio=23 -XX:MaxTenuringThreshold=15 -XX:InlineSmallCode=10k -verbose:gc -XX:TargetSurvivorRatio=90 -XX:+UseRTMDeopt -XX:MaxGCPauseMillis=300				
• JVM settings Transaction Injector	-server -Xms2g -Xmx2g -Xmn1536madd-modules=java.xml.bind - XX:+UseLargePages -XX:LargePageSizeInBytes=2m -XX:+UseParallelOldGC				
(TxI)	specjbb.group.count = 1				
 SPECjbb2015 settings 	specjbb.group.count = 1 specjbb.txi.pergroup.count = 1				
For measurement r					
BIOS settings	VT-d set to Disabled				
	SUSE Linux Enterprise Server 15 4.12.14-23-default				
Operating system	cpupower -c all frequency-set -g performance				
 Operating system settings 	echo 0 > /proc/sys/kernel/numa_balancing				
counigo	echo 16000000 > /proc/sys/kernel/sched_latency_ns				
	echo robobbob > rpiocisysikemensched_tatency_ns				

	echo 500000 > /proc/sys/kernel/sched_cfs_bandwidth_slice_us
	echo 1500 > /proc/sys/vm/dirty_writeback_centisecs
• JVM	Oracle Java SE 10.0.2
• JVM settings Controller (Ctr)	-server -Xms2g -Xmx2g -Xmn1536madd-modules=java.xml.bind - XX:+UseLargePages -XX:LargePageSizeInBytes=2m -XX:+UseParallelOldGC

• JVM settings Backends (BE)	-showversion -server -Xmx28g -Xms28g -Xmn27gadd-modules=java.xml.bind -XX:+UseParallelOldGC -XX:ParallelGCThreads=12 -XX:+AggressiveOpts - XX:+AlwaysPreTouch -XX:-UseAdaptiveSizePolicy -XX:SurvivorRatio=23 -XX:MaxTenuringThreshold=15 -XX:InlineSmallCode=10k -verbose:gc -XX:TargetSurvivorRatio=90 -XX:+UseRTMDeopt -XX:MaxGCPauseMillis=300
 JVM settings	-server -Xms2g -Xmx2g -Xmn1536madd-modules=java.xml.bind -
Transaction Injector	XX:+UseLargePages
(TxI)	-XX:LargePageSizeInBytes=2m -XX:+UseParallelOldGC
 SPECjbb2015	specjbb.group.count = 1
settings	specjbb.txi.pergroup.count = 1

Some components may not be available in all countries or sales regions.

Benchmark results

"SPECjbb2015 MultiJVM" measurement result (1) (November 6, 2018) 26,012 SPECjbb2015-MultiJVM max-jOPS

9,513 SPECjbb2015-MultiJVM critical-jOPS

On November 6, 2018, PRIMERGY RX1330 M4 with one Xeon E-2186G processor achieved the scores of 26,012 SPECjbb2015-MultiJVM max-jOPS. With the result, it ranked first in the 1-socket Xeon E server category for SPECjbb2015-MultiJVM max-jOPS.

"SPECjbb2015 MultiJVM" measurement result (2) (November 8, 2018) 25,155 SPECjbb2015-MultiJVM max-jOPS

9,553 SPECjbb2015-MultiJVM critical-jOPS

On November 8, 2018, PRIMERGY RX1330 M4 with one Xeon E-2186G processor achieved the score of 9,535 SPECjbb2015-MultiJVM critical-jOPS. With the result, it ranked first in the 1-socket Xeon E server category for SPECjbb2015-MultiJVM critical-jOPS.

The latest results of the SPECjbb2015 benchmark can be found at https://www.spec.org/jbb2015/results/.

Disk I/O: Performance of storage media

Benchmark description

Performance measurements of disk subsystems for PRIMERGY servers are carried out with a defined measurement method, which models the accesses of real application scenarios on the basis of specifications.

The essential specifications are as follows.

- Random access / sequential access ratio
- Read / write access ratio
- Block size (kiB)
- Queue Depth (number of IO requests to issue at one time)

A given value combination of these specifications is known as "load profile." The following five standard load profiles can be allocated to typical application scenarios.

Standard load	Access	Type of	access	Block size	Application
profile		read	write	[kiB]	
Filecopy	Random	50%	50%	64	Copying files
Fileserver	Random	67%	33%	64	Fileserver
Database	Random	67%	33%	8	Database (data transfer) Mail server
Streaming	Sequential	100%	0%	64	Database (log file), Data backup, Video streaming (partial)
Restore	Sequential	0%	100%	64	Restoring files

In order to model applications that access in parallel with a different load intensity the Queue Depth is increased from 1 to 512 (in steps to the power of two).

The measurements of this document are based on these standard load profiles.

The main measurement items are as follows.

- Throughput [MiB/s] Throughput in megabytes per second
- Transactions [IO/s] Transaction rate in I/O operations per second
- Latency [ms] Average response time in ms

The data throughput has established itself as the normal measurement variable for sequential load profiles, whereas the measurement variable "transaction rate" is mostly used for random load profiles with their small block sizes. Data throughput and transaction rate are directly proportional to each other and can be transferred to each other according to the following formula.

Data throughput [MiB/s]	= Transaction rate [IO/s] x Block size [MiB]	
Transaction rate [IO/s]	= Data throughput [MiB/s] / Block size [MiB]	

In this section, a power of 10 (1 TB = 10^{12} bytes) is used to indicate the capacity of the hard storage medium, and a power of 2 (1 MiB / s = 2^{20} bytes) is used to indicate the capacity of other media, file size, block size, and throughput.

All the details of the measurement method and the basics of disk I/O performance are described in the white paper "<u>Basics of Disk I/O Performance</u>."

Benchmark environment

All the measurement results discussed in this section apply for the hardware and software components listed below.

System Under Te	st (SUT)	
Hardware		
3.5 inch Model:		
Controller: 1	x PRAID CP400i	
Storage media	Category	Drive Name
HDD	SAS HDD (SAS 12 Gbps, 10k rpm) [512e]	AL15SEB18EQ *2 *3
	SAS HDD (SAS 12 Gbps, 10k rpm) [512n]	AL15SEB030N *2 *3
	SAS HDD (SAS 12 Gbps, 15k rpm) [512n]	ST300MP0006 *1 *3
	NL-SAS HDD (SAS 12 Gbps, 7.2k rpm) [512e]	HUH721212AL5204 *2 *3
	NL-SAS HDD (SAS 12 Gbps, 7.2k rpm) [512n]	ST2000NM0045 *1 *3
	BC-SATA HDD (SATA 6 Gbps, 7.2k rpm) [512e]	ST6000NM0115 *1 *3
		HUH721212ALE604 *2 *3
	BC-SATA HDD (SATA 6 Gbps, 7.2k rpm) [512n]	HUS722T1TALA604 *2 *3
		ST2000NM0055 *1 *3
	SATA HDD (SATA 6 Gbps, 7.2k rpm) [512e]	ST1000DM003-1SB *1 *3
SSD	SATA SSD (SATA 6 Gbps, Mixed Use)	MZ7KH240HAHQ *2 *3
		MZ7KH480HAHQ *2 *3
		MZ7KH960HAJR *2 *3
		MZ7KH1T9HAJR *2 *3
		MZ7KH3T8HALS *2 *3
	SATA SSD (SATA 6 Gbps, Read Intensive)	MTFDDAK240TCB *2 *3
		MTFDDAK480TDC *2 *3
		MTFDDAK960TDC *2 *3
		MTFDDAK1T9TDC *2 *3
		MTFDDAK3T8TDC *2 *3
		MTFDDAK7T6TDC *2 *3

Сс	ontroller: Int	el® C620 Standard SATA AHCI controller	
	Storage media	Category	Drive Name
SSD		M.2 Flash Module	MTFDDAV240TCB *2 *4
			MTFDDAV480TCB *2 *4

2.5 inch Model:

torage media	Category	Drive Name
HDD	SAS HDD (SAS 12 Gbps, 10k rpm) [512e]	AL15SEB06EQ *2 *3
	SAS HDD (SAS 12 Gbps, 10k rpm) [512n]	AL15SEB030N *2 *3
	SAS HDD (SAS 12 Gbps, 15k rpm) [512n]	ST300MP0006 *1 *3
	BC-SATA HDD (SATA 6 Gbps, 7.2k rpm) [512e]	ST1000NX0313 *1 *3
	BC-SATA HDD (SATA 6 Gbps, 7.2k rpm) [512n]	ST2000NX0403 *1 *3
SSD	SATA SSD (SATA 6 Gbps, Mixed Use)	MZ7KH240HAHQ *2 *3
		MZ7KH480HAHQ *2 *3
		MZ7KH960HAJR *2 *3
		MZ7KH1T9HAJR *2 *3
		MZ7KH3T8HALS *2*3
	SATA SSD (SATA 6 Gbps, Read Intensive)	MTFDDAK240TCB *2 *3
		MTFDDAK480TDC *2 *3
		MTFDDAK960TDC *2 *3
		MTFDDAK1T9TDC *2 *3
		MTFDDAK3T8TDC *2 *3
		MTFDDAK7T6TDC *2 *3

Controller: Intel® C620 Standard SATA AHCI controller

Storage media	Category	Drive Name
SSD	M.2 Flash Module	MTFDDAV240TCB *2 *4
		MTFDDAV480TCB *2 *4

*1) Operating system used Microsoft Windows Server 2012 Standard R2.

*2) Operating system used Microsoft Windows Server 2016 Standard.

*3) Measurement area is type 1.

*4) Measurement area is type 2.

Software

Operating system		Microsoft Windows Server 2012 Standard R2	
		Microsoft Windows Server 2016 Standard	
Benchmark version		3.0 Logical drive of type RAID 0 consisting of 1 hard disk Controller default (here, 64 kiB) Iometer 1.1.0	
RAID type			
Stripe size			
Measuring tool			
Measurement area Ty		RAW file system is used. The first 10% of the usable LBA area is used for sequential accesses; the next 25% is used for random accesses.	
	Type 2	NTFS file system is used. A 32 GiB area is secured at the top of the target drive and is used for sequential accesses and random accesses.	
Total number of lometer workers		1	
Alignment of Iometer accesses		Aligned to whole multiples of 4096 bytes	
Somo components may n	ot ha av	nalable in all countries or sales regions	

Some components may not be available in all countries or sales regions.

Benchmark results

The results shown here are intended to help you select the appropriate storage media under the aspect of disk-I/O performance. For this purpose, a single storage medium was measured in the configuration specified in the subsection "<u>Benchmark environment</u>."

Controller

The measurements were made using controllers in the table below.

Storage media	Controller name	Cache	Supported interfaces		RAID levels
			host	drive	
SSD/HDD	PRAID CP400i	-	8x PCIe 3.0	SATA 6G	SSD/HDD
				SAS 12G	
M.2 Flash	C620 Standard SATA AHCI controller	-	4x DMI 3.0	SATA 6G	-

Storage media

When selecting the type and number of storage media you can move the weighting in the direction of storage capacity, performance, security or price. The following types of HDD and SSD storage media can be used for PRIMERGY servers.

Model type	Storage medium type	Interface	Form factor
3.5 inch model	HDD	SAS 12G	3.5 inch or 2.5 inch ¹⁾
		SATA 6G	3.5 inch
	SSD	SATA 6G	2.5 inch ¹⁾ or M.2
2.5 inch model	HDD	SAS 12G	2.5 inch
		SATA 6G	2.5 inch
	SSD	SAS 12G	2.5 inch
		SATA 6G	2.5 inch or M.2

1) It is available with a 3.5 inch cage.

HDDs and SSDs are operated via host bus adapters, usually RAID controllers, with a SATA or SAS interface. The interface of the RAID controller to the chipset of the system board is typically PCIe or, in the case of the integrated onboard controllers, an internal bus interface of the system board.

Of all the storage medium types SSDs offer by far the highest transaction rates for random load profiles as well as the shortest access times. In return, however, the price per gigabyte of storage capacity is substantially higher.

Cache settings

In most cases, the cache of HDDs has a great influence on disk I/O performance. It is frequently regarded as a security problem in case of power failure and is thus switched off. On the other hand, it was integrated by hard disk manufacturers for the good reason of increasing the write performance. For performance reasons it is therefore advisable to enable the hard disk cache. To prevent data loss in case of power failure you are recommended to equip the system with a UPS.

For the purpose of easy and reliable handling of the settings for RAID controllers and hard disks it is advisable to use the RAID-Manager software "ServerView RAID" that is supplied for PRIMERGY servers. All the cache settings for controllers and hard disks can usually be made en bloc specifically for the application - by using the pre-defined mode "Performance" or "Data Protection." The "Performance" mode ensures the best possible performance settings for the majority of the application scenarios.

Performance values

The performance values are summarized in the following tables. In each case specifically for a single storage medium and with various access types and block sizes. The established measurement variables, as already mentioned in the subsection "<u>Benchmark description</u>" are used here. Thus, transaction rate is specified for random accesses and data throughput for sequential accesses.

The table cells contain the maximum achievable values. This means that each value is the maximum achievable value of the whole range of load intensities (number of Outstanding I/Os). In order to also visualize the numerical values each table cell is highlighted with a horizontal bar, the length of which is proportional to the numerical value in the table cell. All bars shown in the same scale of length have the same color. In other words, a visual comparison only makes sense for table cells with the same colored bars. Since the horizontal bars in the table cells depict the maximum achievable performance values, they are shown by the color getting lighter as you move from left to right. The light shade of color at the right end of the bar tells you that the value is a maximum value and can only be achieved under optimal prerequisites. The darker the shade becomes as you move to the left, the more frequently it will be possible to achieve the corresponding value in practice.

Storage media performance

3.5 inch model

HDDs

Capacity	Storage device	Inter face	т	ransactions [IO/	Throughput [MiB/s]		
[GB]	Storage device	interrace	Database	Fileserver	Filecopy	Streaming	Restore
1,800	AL15SEB18EQ	SAS 12G	6 <mark>00</mark>	512	547	258	255
300	AL15SEB030N	SAS 12G	645	546	568	231	230
300	ST300MP0006	SAS 12G	768	662	472	304	304
12,000	HUH721212AL5204	SAS 12G	396	339	364	245	244
2,000	ST2000NM0045	SAS 12G	376	336	343	206	206
6,000	ST6000NM0115	SATA 6G	392	362	371	213	208
12,000	HUH721212ALE604	SATA 6G	350	313	341	246	246
1,000	HUS722T1TALA604	SATA 6G	287	264	269	201	201
2,000	ST2000NM0055	SATA 6G	339	301	314	196	195
1,000	ST1000DM003-1SB	SATA 6G	222	210	204	208	203

SSDs

Capacity Storage device		Inter face	Т	ransactions [IO/	Throughput [MiB/s]		
[GB]	Storage device		Database	Fileserver	Filecopy	Streaming	Restore
240	MZ7KH240HAHQ	SATA 6G	49,159	7,313	7,431	526	486
480	MZ7KH480HAHQ	SATA 6G	50,558	7,774	7,810	526	485
960	MZ7KH960HAJR	SATA 6G	50,647	7,793	7,916	525	485
1,920	MZ7KH1T9HAJR	SATA 6G	50,702	8,040	7,960	526	485
3,840	MZ7KH3T8HALS	SATA 6G	50,766	8,039	7,936	526	485
240	MTFDDAK240TCB	SATA 6G	18,959	3,367	4,516	487	258
480	MTFDDAK480TDC	SATA 6G	24,710	3,799	5,006	507	362
960	MTFDDAK960TDC	SATA 6G	3 <mark>0,152</mark>	4,625	5,553	507	440
1,920	MTFDDAK1T9TDC	SATA 6G	37,234	5,606	5,566	507	483
3,840	MTFDDAK3T8TDC	SATA 6G	41,711	6,429	6,133	504	481
7,680	MTFDDAK7T6TDC	SATA 6G	40,683	6,874	6,672	469	482
240	MTFDDAV240TCB	SATA 6G	20,113	3,936	5,021	510	271
480	MTFDDAV480TCB	SATA 6G	22,596	4,993	6,331	509	403

2.5 inch model

HDDs

Capacity st	Storage device	Inter face	т	ransactions [IO/s	Throughput [MiB/s]		
[GB]	Storage device		Database	Fileserver	Filecopy	Streaming	Restore
1,200	AL15SEB12EQ	SAS 12G	594	520	546	260	259
300	AL15SEB030N	SAS 12G	645	5 <mark>46</mark>	568	231	230
300	ST300MP0006	SAS 12G	768	662	472	304	304
1,000	ST1000NX0313	SATA 6G	324	281	288	131	131
2,000	ST2000NX0403	SATA 6G	326	286	294	133	133

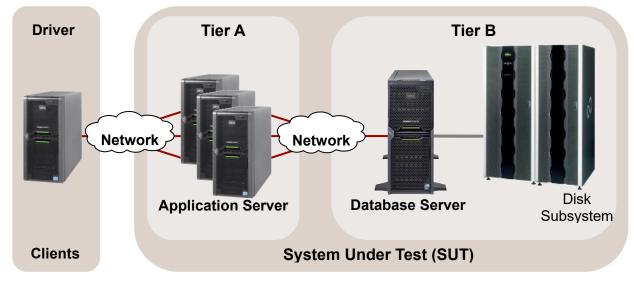
SSDs

Capacity Storage device		Inter face	Т	ransactions [IO/	Throughput [MiB/s]		
[GB]	Storage device		Database	Fileserver	Filecopy	Streaming	Restore
240	MZ7KH240HAHQ	SATA 6G	49,159	7,313	7,431	526	486
480	MZ7KH480HAHQ	SATA 6G	50,558	7,774	7,810	526	485
960	MZ7KH960HAJR	SATA 6G	50,647	7,793	7,916	525	485
1,920	MZ7KH1T9HAJR	SATA 6G	50,702	8,040	7,960	526	485
3,840	MZ7KH3T8HALS	SATA 6G	50,766	8,039	7,936	526	485
240	MTFDDAK240TCB	SATA 6G	18,959	3,367	4,516	487	258
480	MTFDDAK480TDC	SATA 6G	24,710	3,799	5,006	507	362
960	MTFDDAK960TDC	SATA 6G	3 <mark>0,152</mark>	4,625	5,553	507	440
1,920	MTFDDAK1T9TDC	SATA 6G	37,234	5,606	5,566	507	483
3,840	MTFDDAK3T8TDC	SATA 6G	41,711	6,429	6,133	504	481
7,680	MTFDDAK7T6TDC	SATA 6G	40,683	6,874	6,672	469	482
240	MTFDDAV240TCB	SATA 6G	20,113	3,936	5,021	510	271
480	MTFDDAV480TCB	SATA 6G	22,596	4,993	6,3 <mark>31</mark>	509	403

OLTP-2

Benchmark description

OLTP stands for Online Transaction Processing. The OLTP-2 benchmark is based on the typical application scenario of a database solution. In OLTP-2, database access is simulated and the number of transactions achieved per second (tps) is determined as the unit of measurement for the system.


In contrast to benchmarks such as SPECint and TPC-E, which were standardized by independent bodies and for which adherence to the respective rules and regulations is monitored, OLTP-2 is an internal benchmark developed by Fujitsu. OLTP-2 is based on the well-known database benchmark TPC-E. It has been designed in such a way that a wide range of configurations can be measured to present the scaling performance of a system with regard to the CPU and memory configuration.

Even if the two benchmarks OLTP-2 and TPC-E simulate similar application scenarios using the same load profiles, the results cannot be compared or even treated as equal, as the two benchmarks use different methods to simulate user load. OLTP-2 values are typically similar to TPC-E values. However, direct comparison, or even referring to the OLTP-2 result as TPC-E, is not permitted, in particular because there is no price-performance calculation.

Further information can be found in the document **Benchmark Overview OLTP-2**.

Benchmark environment

The typical measurement set-up is illustrated below:

All results were determined based on those for a PRIMERGY RX1330 M4.

Database Server (Tier B)	
Hardware	
• Model	PRIMERGY RX1330 M4
Processor	Intel Celeron G4900
	Intel Pentium Gold G5400
	Intel Core i3-8100
	Intel Xeon Processor E-2100 Product Family
	Intel Celeron G4930
	Intel Pentium Gold G5420
	Intel Core i3-9100
	Intel Xeon Processor E-2200 Product Family
Memory	4 × 16 GB (1 x 16 GB) 2Rx8 DDR4-2666 U ECC
Network interface	2 × onboard LAN 1 Gb/s
Disk subsystem	Operating system and database applications, RAID 1 (OS)
	Sequential access, optimized to reduce response time, RAID 1 (LOG)
	Write, optimize for response time priority, RAID 1 (temp)
	Random access, optimize throughput, RAID5 (data)
Software	·
• BIOS	Version R1.0.0 (Xeon E-2100 Product Family, G4900, G5400, i3-8100)
	Version R1.12.0 (Xeon E-2200 Product Family, G4930, G5420, i3-9100)
Operating system	Microsoft Windows Server 2016 Standard
• Database	Microsoft SQL Server 2017 Enterprise

Application Server (Tier A)

Hardware	
• Model	1 × PRIMERGY RX2530 M2
Processor	2 × Xeon E5-2699 v4
Memory	128 GB, 2,400 MHz registered ECC DDR4
Network interface	4 × onboard LAN 1 Gb/s
Disk subsystem	2 × 300 GB 10 krpm SAS Drive
Software	
Operating system	Microsoft Windows Server 2012 R2 Standard

Client	
Hardware	
• Model	1 × PRIMERGY RX2530 M2
 Processor 	2 × Xeon E5-2667 v4
Memory	128 GB, 2,400 MHz registered ECC DDR4
 Network interface 	2 × onboard Quad Port LAN 1 Gb/s
 Disk subsystem 	2 × 300 GB 10 krpm SAS Drive
	1 × 400 GB 12 Gb/s SAS Drive
Software	
Operating system	Microsoft Windows Server 2012 R2 Standard
 Benchmark 	OLTP-2 Software EGen version 1.14.0

Some components may not be available in all countries or sales regions.

Benchmark results

Database performance greatly depends on the configuration options with the CPU and memory, and on the connectivity of an adequate disk subsystem for the database. In the following scaling considerations for the processors we assume that both the memory and the disk subsystem have been appropriately chosen and are not bottlenecks.

A guideline for the database environment for selecting the main memory is that sufficient quantity is more important than the speed of memory access. This why a configuration with a max. memory of 64 GB was considered for the measurements with one processor. The memory configuration had a memory access of 2666 MHz.

The following diagram shows the OLTP-2 transaction rates that can be achieved with Intel Celeron G4900, Inte Pentium Gold G5400, Intel Core i3-8100 and Intel Xeon Processor E-2100 Product Family processors, and with Intel Celeron G4930, Intel Pentium Gold G5420, Intel Core i3-9100, and Intel Xeon Processor E-2200 Product Family processors.

OLTP-2 tps Xeon E-2288G - 8C, HT 1313 Xeon E-2278G - 8C, HT 1273 Xeon E-2286G - 6C, HT 1071 Xeon E-2276G - 6C, HT 1062 Xeon E-2246G - 6C, HT 1050 Xeon E-2236 - 6C, HT 1043 Xeon E-2226G - 6C TBD Xeon E-2274G - 4C, HT Xeon E-2244G - 4C, HT Xeon E-2234 - 4C, HT Xeon E-2224G - 4C TRD Xeon E-2224 - 4C TBD Core i3-9100 - 4C TBD Pentium Gold G5420 - 2C, HT TRD Celeron G4930 - 2C TRD Xeon E-2186G - 6C, HT 1071.28 Xeon E-2176G - 6C, HT 1062.18 Xeon E-2146G - 6C, HT 1030.63 Xeon E-2136 - 6C, HT 1036.30 Xeon E-2126G - 6C 762.97 Xeon E-2174G - 4C, HT 741.62 Xeon E-2144G - 4C, HT 741.09 Xeon E-2134 - 4C, HT 737.72 Xeon E-2124G - 4C 528.38 Xeon E-2124 - 4C 512.19 Core i3-8100 - 4C 456.31 Pentium Gold G5400 - 2C HT 341.61 Celeron G4900 - 2C 172.22 200 400 600 800 1000 1200 1400 tps HT: Hyper-Threading

The results in italic are estimated values.

It is evident that a wide performance range is covered by a variety of released processors. If you compare the OLTP-2 value for the processor with the lowest performance (Celeron G4900) with the value for the processor with the highest performance (Xeon E-2288G), the result is a 7-fold increase in performance.

The features of the processors are summarized in the section "Technical data".

The relatively large performance differences between the processors can be explained by their features. The values scale on the basis of the number of cores, the size of the L3 cache and the CPU clock frequency, and as a result of the features of Hyper-Threading and turbo mode, which are available in most processor types.

A low performance can be seen in the Celeron G4900, Pentium Gold G5400 and Core i3-8100 processors, as they have to manage without turbo mode. In particular, the two-core processors Celeron G4900 and Pentium Gold G5400 are the lowest performing.

Within a group of processors with the same number of cores, scaling can be seen via the CPU clock frequency.

VMmark V3

Benchmark description

VMmark V3 is a benchmark developed by VMware to compare server configurations with hypervisor solutions from VMware regarding their suitability for server consolidation. In addition to the software for load generation, the benchmark consists of a defined load profile and binding regulations. The benchmark results can be submitted to VMware and are published on their Internet site after a successful review process. After the discontinuation of the proven benchmark "VMmark V2" in September 2017, it has been succeeded by "VMmark V3". VMmark V2 required a cluster of at least two servers and covers data center functions, like Cloning and Deployment of virtual machines (VMs), Load Balancing, as well as the moving of VMs with vMotion and also Storage vMotion. VMmark V3 covers the moving of VMs with XvMotion in addition to VMmark V2. Also, changes application architecture to more scalable workloads.

In addition to the "Performance Only" result, alternatively measure the electrical power consumption and publish it as a "Performance with Server Power" result (power consumption of server systems only) and/or "Performance with Server and Storage Power" result (power consumption of server systems and all storage components).

VMmark V3 is not a new benchmark in the actual sense. It is in fact a framework that consolidates already established benchmarks, as workloads in order to simulate the load of a virtualized consolidated server environment. Two

Application scenario	Load tool	# VMs
Scalable web system	Weathervane	14
E-commerce system	DVD Store 3 client	4
Standby system		1

proven benchmarks, which cover the application scenarios Scalable web system and E commerce system were integrated in VMmark V3.

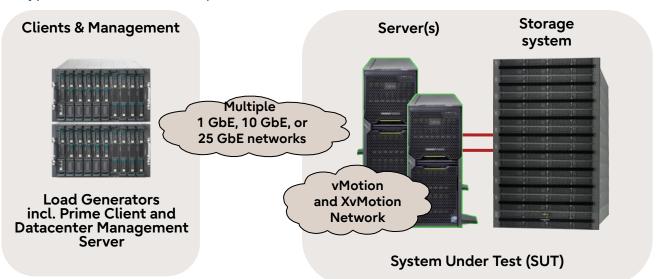
Each of the three application scenarios is assigned to a total of 18 dedicated virtual machines. Then add to these an 19th VM called the "standby server". These 19 VMs form a "tile". Because of the performance capability of the underlying server hardware, it is usually necessary to have started several identical tiles in parallel as part of a measurement in order to achieve a maximum overall performance.

In VMmark V3 there is an an infrastructure component, which is present once for every two hosts. It measures the efficiency levels of data center consolidation through VM Cloning and Deployment, vMotion, XvMotion and Storage vMotion. The Load Balancing capacity of the data center is also used (DRS, Distributed Resource Scheduler).

The result of VMmark V3 for test type "Performance Only" is a number, known as a "score", which provides information about the performance of the measured virtualization solution. The score is the maximum sum of the benefits of server aggregation and is used as a comparison criterion for different hardware platforms.

This score is determined from the individual results of the VMs and an infrastructure components result. Each of the five VMmark V3 application or front-end VMs provides a specific benchmark result in the form of application-specific transaction rates for each VM. In order to derive a normalized score, the individual benchmark result for each tile is put in relation to the respective results of a reference system. The resulting dimensionless performance values are then averaged geometrically and finally added up for all VMs. This value is included in the overall score with a weighting of 80%. The infrastructure workload is only present in the benchmark once for every two hosts; it determines 20% of the result. The number of transactions per hour and the average duration in seconds respectively are determined for the score of the infrastructure components workload.

In addition to the actual score, the number of VMmark V3 tiles is always specified with each VMmark V3 score. The result is thus as follows: "Score@Number of Tiles", for example "8.11@8 tiles".


In the case of the two test types "Performance with Server Power" and "Performance with Server and Storage Power", a so-called "Server PPKW Score" and "Server and Storage PPKW Score" are determined. These are the performance scores divided by the average power consumption in kilowatts (PPKW = performance per kilowatt (kW)).

The results of the three test types should not be compared with each other.

A detailed description of VMmark V3 is available in the document <u>Benchmark Overview VMmark</u> <u>V3</u>.

Benchmark environment

The typical measurement set-up is illustrated below:

System Under Test (SUT)		
Hardware		
•Number of servers	3	
•Model	PRIMERGY RX1330 M4	
• Processor	Intel® Xeon® E-2186G	

•Model	PRIMERGY RX1330 M4
Processor	Intel® Xeon® E-2186G
•Memory	64 GB: 4 × 16 GB (1 x 16 GB) 2Rx8 DDR4-2666 U ECC
 Network interface 	Intel Ethernet Controller X710 for 10 GbE SFP+
	Intel Corporation I210 Gigabit Network Connection
 Disk subsystem 	1 × Dual port PFC EP LPe31002
	1 × PRIMERGY TX2560 M2 configured as Fibre Channel target:
	1 ×Toshiba PX02SMF040 400 GB SAS SSD (400 GB)
	2 × Fusion-io ioMemory PX600 (2.6 TB)
	RAID 0 with several LUNs Total: 5.6 TB
C (1)	
Software	
• BIOS	R1.0.0
 BIOS settings 	See details
 Operating system 	VMware ESXi 6.5 U2 GA, Build 8294253
 Operating system settings 	ESX settings: see details

Details	
See disclosure	http://www.vmware.com/a/assets/vmmark/pdf/2018-11-06-Fujitsu-RX1330M4.pdf
	http://www.vmware.com/a/assets/vmmark/pdf/2018-11-06-Fujitsu-RX1330M4- serverPPKW.pdf
	<u>http://www.vmware.com/a/assets/vmmark/pdf/2018-11-06-Fujitsu-RX1330M4-</u> serverstoragePPKW.pdf

Datacenter Management Server (DMS) Hardware 1 × PRIMERGY RX2530 M2 • Model Processor 2 × Intel Xeon E5-2698 v4 64 GB • Memory Network interface 1 × Emulex One Connect Oce14000 1 GbE Dual Port Adapter Software Hypervisor: VMware ESXi 6.7 EP 02a Build 9214924 • Operating system Datacenter Management Server (DMS) VM Hardware 4 × logical CPU • Processor 16 GB • Memory 1 × 1 Gbit/s LAN Network interface Software VMware vCenter Server Appliance 6.7.0d Build 9451876 • Operating system

Load generator	
Hardware	
• Model	1 × PRIMERGY RX2530 M2
Processor	2 × Xeon E5-2699 v4
Memory	256 GB
Network interface	1 × Emulex One Connect Oce14000 1 GbE Dual Port Adapter
	1 × Emulex One Connect Oce14000 10 GbE Dual Port Adapter
Software	
Operating system	VMware ESXi 6.5.0 U1 Build 5969303

Some components may not be available in all countries or sales regions.

Benchmark results

"Performance Only" measurement result (November 6, 2018)

On November 6, 2018, with a PRIMERGY RX1330 M4 with Xeon E-2186G processors and VMware ESXi 6.5 U2 GA, Fujitsu achieved a VMmark V3 score of "1.41@1 tiles" in a system configuration with a total of three processor cores when using three identical servers in the "System under Test" (SUT). With this result, in the official VMmark V3 "Performance

Only" ranking, the PRIMERGY RX1330 M4 is the most powerful one-socket server in a configuration consisting of three identical hosts (valid as of the benchmark results publication date).

All comparisons for the competitor products reflect the status as of November 6, 2018. The current VMmark V3 "Performance Only" results as well as the detailed results and configuration data are available at <u>https://www.vmware.com/products/vmmark/results3x.html</u>.

The processors used, which with a good hypervisor setting were able to make optimal use of their processor features, were the essential prerequisites for achieving the PRIMERGY RX1330 M4 result. These features include Hyper-Threading. All this has a particularly positive effect during virtualization.

All VMs, their application data, the host operating system as well as additionally required data were on a powerful Fibre Channel disk subsystem. As far as possible, the configuration of the disk subsystem takes the specific requirements of the benchmark into account. The use of flash technology in the form of SAS SSDs and PCIe-SSDs in the powerful Fibre Channel disk subsystem resulted in further advantages in response times of the storage medium used.

The network connection to the load generators and the infrastructure-workload connection between the hosts were implemented via 10GbE LAN ports.

All the components used were adjusted to work optimally with each other.

"Performance with Server Power" measurement result (November 6, 2018)

On November 6, 2018, with a PRIMERGY RX1330 M4 with Xeon E-2186G processors and VMware ESXi 6.5 U2 GA, Fujitsu achieved a VMmark V3 "Server PPKW Score" of "3.4996@1 tiles" in a system configuration with a total of three processor cores when using three identical servers in the "System under Test" (SUT). With this result, in the official VMmark

V3 "Performance with Server Power" ranking, the PRIMERGY RX1330 M4 is the most energy-efficient virtualization server worldwide (valid as of the benchmark results publication date).

The current VMmark V3 "Performance with Server Power" results as well as the detailed results and configuration data are available at <u>https://www.vmware.com/products/vmmark/results3x.html</u>.

"Performance with Server and Storage Power" measurement result (November 6, 2018)

On November 6, 2018 with a PRIMERGY RX1330 M4 with Xeon E-2186G processors and VMware ESXi 6.5 U2 GA, Fujitsu achieved a VMmark V3 "Server and Storage PPKW Score" of "1.9102@1 tiles" in a system configuration with a total of three processor cores when using three identical servers in the "System under Test" (SUT). With this result, in the

official VMmark V3 "Performance with Server and Storage Power" ranking, the PRIMERGY PRIMERGY RX1330 M4 is the most energy-efficient virtualization platform worldwide (valid as of the benchmark results publication date).

The current VMmark V3 "Performance with Server and Storage Power" results as well as the detailed results and configuration data are available at https://www.mware.com/products/wmmark/results3x.html

https://www.vmware.com/products/vmmark/results3x.html.

Intel Xeon E-2200Series

The result for a PRIMERGY RX1330M4 with Xeon E-2288G processors and VMware ESXi 6.7 EP 08 is given below, followed by the result with Xeon E-2186G processors. Two identical servers in the "System under Test" (SUT) and a total of two processor cores were used for this result. Fujitsu achieved the measurement for one tile with a PRIMERGY RX1330M4 with Xeon E-2288G processors when using two identical servers in the "System under Test" (SUT), and achieved the measurement for one tile with Xeon E-2186G processors when using two identical servers in the "System under Test" (SUT), and achieved the measurement for one tile with Xeon E-2186G processors when using three identical servers in the "System under Test" (SUT).

System Under Test (SUT)		
Hardware	Hardware	
Number of servers	2	
• Model	PRIMERGY RX1330 M4	
Processor	Intel® Xeon® E-2288G	
Memory	128 GB: 4 × 32GB (1 x 32GB) 2Rx8 DDR4-2666 U ECC	
Network interface	Intel Ethernet Controller X710 for 10 GbE SFP+	
	Intel Corporation I210 Gigabit Network Connection	
 Disk subsystem 	1 × Dual port Emulex LightPulse LPe31002-M6 Dual Port 16 Gb	
-	1 × PRIMERGY RX2540 M4 configured as Fibre Channel target:	
	1 × Micron MTFDDAK960 TDC 960GB SATA SSD (960 GB)	
	1 × Intel P4800X 750GB PCIe SSD (750 GB)	
	3 × Intel P4600 2TB PCIe SSD (2 TB)	
Software		
• BIOS	V5.0.0.13 R1.12.0 for D3675-A1x	
 BIOS settings 	See details	
 Operating system 	VMware ESXi 6.7 EP 08, Build 13473784	
 Operating system settings 	ESX settings: see details	

Details	
See disclosure	https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/vmmark/2019
	-11-01-Fujitsu-RX1330M4.pdf
	https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/vmmark/2019 -11-01-Fujitsu-RX1330M4-serverPPKW.pdf
	https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/vmmark/2019
	-11-01-Fujitsu-RX1330M4-serverstoragePPKW.pdf

Datacenter Management Server (DMS)			
Hardware			
• Model	1 × PRIMERGY RX2530 M2		
Processor	2 × Intel Xeon E5-2698 v4		
Memory	64 GB		
Network interface	1 × Emulex One Connect Oce14000 1 GbE Dual Port Adapter		
Software			
 Operating system 	Hypervisor: VMware ESXi 6.7 EP 02a Build 9214924		
Datacenter Manager	Datacenter Management Server (DMS) VM		
Hardware			
Processor	4 × logical CPU		
Memory	16 GB		
Network interface	1 × 1 Gbit/s LAN		
Software			
Operating system	VMware vCenter Server Appliance 6.7.0d Build 9451876		
Load generator			
Hardware			

i di difato	
1 × PRIMERGY RX2530 M2	
2 × Xeon E5-2699 v4	
256 GB	
1 × Emulex One Connect Oce14000 1 GbE Dual Port Adapter	
1 × Emulex One Connect Oce14000 10 GbE Dual Port Adapter	
VMware ESXi 6.7 U1 Build 10302608	

Some components may not be available in all countries or sales regions.

Benchmark results

"Performance Only" measurement result (November 1, 2019)

On November 1, 2019, with a PRIMERGY RX1330 M4 with Xeon E-2288G processors and VMware ESXi 6.7 EP 08, Fujitsu achieved a VMmark V3 score of "1.38@1 tiles" in a system configuration with a total of two processor cores when using three identical servers in the "System under Test" (SUT). With this result, in the official VMmark V3 "Performance Only"

ranking, the PRIMERGY RX1330 M4 is the most powerful one-socket server in a configuration consisting of two identical hosts (valid as of the benchmark results publication date) in Intel Xeon E-Series.

All comparisons for the competitor products reflect the status as of November 1, 2019. The current VMmark V3 "Performance Only" results as well as the detailed results and configuration data are available at <u>https://www.vmware.com/products/vmmark/results3x.html</u>.

The processors used, which with a good hypervisor setting were able to make optimal use of their processor features, were the essential prerequisites for achieving the PRIMERGY RX1330 M4 result. These features include Hyper-Threading. All this has a particularly positive effect during virtualization.

All VMs, their application data, the host operating system as well as additionally required data were on a powerful Fibre Channel disk subsystem. As far as possible, the configuration of the disk subsystem takes the specific requirements of the benchmark into account. The use of flash technology in the form of SAS SSDs and PCIe-SSDs in the powerful Fibre Channel disk subsystem resulted in further advantages in response times of the storage medium used.

The network connection to the load generators and the infrastructure-workload connection between the hosts were implemented via 10GbE LAN ports.

All the components used were adjusted to work optimally with each other.

"Performance with Server Power" measurement result (November 1, 2019)

On November 1, 2019, with a PRIMERGY RX1330 M4 with Xeon E-2288G processors and VMware ESXi 6.7 EP 08, Fujitsu achieved a VMmark V3 "Server PPKW Score" of "3.9262@1 tiles" in a system configuration with a total of two processor cores when using two identical servers in the "System under Test" (SUT). With this result, in the official VMmark

V3 "Performance with Server Power" ranking, the PRIMERGY RX1330 M4 is the most energy-efficient virtualization server worldwide (valid as of the benchmark results publication date).

The current VMmark V3 "Performance with Server Power" results as well as the detailed results and configuration data are available at <u>https://www.vmware.com/products/vmmark/results3x.html</u>.

"Performance with Server and Storage Power" measurement result (November 1, 2019)

On November 1, 2019, with a PRIMERGY RX1330 M4 with Xeon E-2288G processors and VMware ESXi 6.7 EP 08, Fujitsu achieved a VMmark V3 "Server and Storage PPKW Score" of "2.7464@1 tiles" in a system configuration with a total of two processor cores when using two identical servers in the "System under Test" (SUT). With this result, in the official

VMmark V3 "Performance with Server and Storage Power" ranking, the PRIMERGY RX1330 M4 is the most energy-efficient virtualization platform worldwide (valid as of the benchmark results publication date).

The current VMmark V3 "Performance with Server and Storage Power" results as well as the detailed results and configuration data are available at https://www.mware.com/products/ummark/results3x.html

https://www.vmware.com/products/vmmark/results3x.html.

VMmark® is a product of VMware, Inc.

Literature

PRIMERGY Servers

https://www.fujitsu.com/global/products/computing/servers/primergy/

PRIMERGY RX1330 M4

This Whitepaper

http://docs.ts.fujitsu.com/dl.aspx?id=b7e38640-3198-4c56-9f0e-f2b6a5887baa

http://docs.ts.fujitsu.com/dl.aspx?id=773f5e9a-1d20-44d6-9714-59346ab3d307

Data sheet

http://docs.ts.fujitsu.com/dl.aspx?id=043850d3-9e2f-4897-96fe-a7fa7ead8af6

PRIMERGY Performance

https://www.fujitsu.com/global/products/computing/servers/primergy/benchmarks/

SPEC CPU2017

https://www.spec.org/osg/cpu2017

Benchmark Overview SPECcpu2017

https://docs.ts.fujitsu.com/dl.aspx?id=20f1f4e2-5b3c-454a-947f-c169fca51eb1

STREAM

https://www.cs.virginia.edu/stream/

SPECpower_ssj2008

https://www.spec.org/power_ssj2008

Benchmark Overview SPECpower_ssj2008

https://docs.ts.fujitsu.com/dl.aspx?id=166f8497-4bf0-4190-91a1-884b90850ee0

SPECjbb2015

https://www.spec.org/jbb2015/

OLTP-2

Benchmark Overview OLTP-2

https://docs.ts.fujitsu.com/dl.aspx?id=e6f7a4c9-aff6-4598-b199-836053214d3f

VMmark V3

https://www.vmware.com/products/vmmark.html

Benchmark Overview VMmark V3

https://docs.ts.fujitsu.com/dl.aspx?id=e6f9973c-90d6-47c6-b317-e388a978bfb7

Performance Report PRIMERGY RX1330 M4

Document change history

Version	Date	Description
1.5	2023-10-03	Update: • New Visual Identity format
1.4	2020-04-17	 Update: SPECcpu2017 Calculated with Celeron G4930, Pentium Gold G5420, Core i3-9100 and Intel® Xeon® Processor E-2200 Product Family STREAM Calculated with Celeron G4930, Pentium Gold G5420, Core i3-9100 and Intel® Xeon® Processor E-2200 Product Family
1.3	2019-12-27	Update: • Technical data • Added Intel® Xeon® Processor E-2200 Product Family • SPECcpu2017 • Added measurement with Intel® Xeon® Processor E-2200 Product Family • Disk I/O: Performance of storage media • Results for 2.5" and 3.5" storage media • OLTP-2 • Calculated with Intel® Xeon® Processor E-2200 Product Family • VMmark V3 • Added measurement with Intel® Xeon® Processor E-2200 Product Family
1.2	2019-08-05	Update: • SPECpower_ssj2008 • Changed the description about the OS and JVM version
1.1	2018-12-25	 New: SPECpower_ssj2008 Measurement with Intel® Xeon® E-2176G Disk I/O: Performance of storage media Results for 2.5" and 3.5" storage media Update: OLTP-2 Additional measurements with Celeron G4900, Pentium Gold G5400, Core i3-8100 and Intel® Xeon® Processor E-2100 Product Family

Document change history

Version	Date	Description
1.0	Date 2018-11-27	New: • Technical data • SPECcpu2017 • Measurements with Celeron G4900, Pentium Gold G5400, Core i3- 8100 and Intel® Xeon® Processor E-2100 Product Family • SPECjbb2015 • Measurement with Intel® Xeon® E-2186G
		 OLTP-2 Measurements with Celeron G4900, Pentium Gold G5400, Core i3- 8100 and Intel® Xeon® Processor E-2100 Product Family VMmark V3 "Performance Only" measurement with Intel® Xeon® E-2186G "Performance with Server Power" measurement with Intel® Xeon® E-2186G "Performance with Server and Storage Power" measurement with Intel® Xeon® E-2186G STREAM Measurements with Celeron G4900, Pentium Gold G5400, Core i3- 8100 and Intel® Xeon® Processor E-2100 Product Family

Contact

Fujitsu

Web site: https://www.fujitsu.com PRIMERGY Performance and Benchmarks mailto:fj-benchmark@dl.jp.fujitsu.com © Fujitsu 2023. All rights reserved. Fujitsu and Fujitsu logo are trademarks of Fujitsu Limited registered in many jurisdictions worldwide. Other product, service and company names mentioned herein may be trademarks of Fujitsu or other companies. This document is current as of the initial date of publication and subject to be changed by Fujitsu without notice. This material is provided for information purposes only and Fujitsu assumes no liability related to its use.