Fujitsu Server PRIMERGY Performance Report PRIMERGY TX2550 M5

This document provides an overview of benchmarks executed on the Fujitsu Server PRIMERGY TX2550 M5.

Explaines PRIMERGY TX2550 M5 performance data in comparison to other PRIMERGY models. In addition to the benchmark results, the explanation for each benchmark and benchmark environment are also included.

Contents

Technical data	
Suffix of Processor number shows additional feature of Xeon Processor	6
SPEC CPU2017	8
Benchmark description	8
Benchmark environment	9
Benchmark results	11
STREAM	14
Benchmark description	14
Benchmark environment	
Benchmark results	
SPECpower_ssj2008	20
Benchmark description	
Benchmark environment	21
Benchmark results(Linux)	
Disk I/O: Performance of storage media	24
Benchmark description	24
Benchmark environment	25
Benchmark results	
3.5 inch model storage media	
2.5 inch model storage media	
OLTP-2	32
Benchmark description	
Benchmark environment	
Benchmark results	
vServCon	
vServCon	
Benchmark description	

Technical data

PRIMERGY TX2550 M5

Decimal prefixes according to the SI standard are used tor measurement offics in this write paper (e.g. 1 GB = 10^{9} bytes). In contrast, these prefixes should be interpreted as binary prefixes (e.g. 1 GB = 2^{30} bytes) for the capacities of caches and memory modules. Separate reference will be made to any further exceptions where applicable.

Model	PRIMERGY TX2550 M5				
	Tower	Rack			
Model Version	PY TX2550 M5 Tower, 4x3.5" basic PY TX2550 M5 Tower, 8x3.5" PY TX2550 M5 Tower, 8x2.5" basic PY TX2550 M5 Tower, 8x2.5" PY TX2550 M5 Tower, 24x2.5" PY TX2550 M5 Tower, 16x2.5"	PY TX2550 M5 Rack, 8x3.5" PY TX2550 M5 Rack, 8x2.5" PY TX2550 M5 Rack, 24x2.5" PY TX2550 M5 Rack, 16x2.5"			
Form factor	Tower or Rack server				
Chipset	Intel C624				
Number of sockets	2				
Number of processors orderable	1 or 2				
Processor type	2nd Generation Intel Xeon Processor S	icalable Family			
Number of memory slots	12 (6 per processor)				
Maximum memory configuration	768 GB				
Onboard HDD controller	Controller with RAID 0, RAID 1 or RAID	10 for up to 8 SATA HDDs			
PCI slots	PCI-Express 3.0 x8 × 5 PCI-Express 3.0 x16 × 3 PCI-32Bit × 1				
	Tower	Rack			
Max. number of internal hard disks	PY TX2550 M5 Tower, 4x3.5" basic: 8 PY TX2550 M5 Tower, 8x3.5" :12 PY TX2550 M5 Tower, 8x2.5" basic : 8 PY TX2550 M5 Tower, 8x2.5" :24 PY TX2550 M5 Tower, 24x2.5" :32 PY TX2550 M5 Tower, 16x2.5" :16	PY TX2550 M5 Rack, 8x3.5" :12 PY TX2550 M5 Rack, 8x2.5" : 24 PY TX2550 M5 Rack, 24x2.5" :32 PY TX2550 M5 Rack, 16x2.5" :16			

Processors (since sy	/stem rel	ease)						
Processor	Cores	Threads	Cache [MB]	UPI Speed [GT/s]	Rated Frequency	Max. Turbo Frequency [Ghz]	Max. Memory Frequency [MHz]	TDP
April 2019 released			Гыр]		[Ghz]	[Guz]	ניידנ	[Watt]
Xeon Gold 6262V	24	48	33.0	10.4	1.9	3.6	2,933	130
Xeon Gold 6252	24	48	35.8	10.4	2.1	3.7	2,933	150
Xeon Gold 6248	20	40	27.5	10.4	2.5	3.9	2,933	150
Xeon Gold 6244	8	16	24.8	10.4	3.6	4.4	2,933	150
Xeon Gold 6242	16	32	22.0	10.4	2.8	3.9	2,933	150
	18	36	-					
Xeon Gold 6240Y	14	28	24.8	10.4	0.4 2.6	3.9	2,933	150
	8	16						
Xeon Gold 6240	18	36	24.8	10.4	2.6	3.9	2,933	150
Xeon Gold 6238	22	44	30.3	10.4	2.1	3.7	2,933	140
Xeon Gold 6234	8	16	24.8	10.4	3.3	4.0	2,933	130
Xeon Gold 6230	20	40	27.5	10.4	2.1	3.9	2,933	125
Xeon Gold 6226	12	24	19.3	10.4	2.7	3.7	2,933	125
Xeon Gold 6222V	20	40	27.5	10.4	1.8	3.6	2,400	115
Xeon Gold 6212U	24	48	33.0	10.4	2.4	3.9	2,933	165
Xeon Gold 6210U	20	40	27.5	10.4	2.5	3.9	2,933	150
Xeon Gold 6209U	20	40	27.5	10.4	2.1	3.9	2,933	125
Xeon Gold 5222	4	8	16.5	10.4	3.8	3.9	2,933	105
Xeon Gold 5220S	18	36	24.8	10.4	2.7	3.9	2,666	125
Xeon Gold 5220	18	36	24.8	10.4	2.2	3.9	2,666	125
Xeon Gold 5218B	16	32	22.0	10.4	2.3	3.9	2,666	125
Xeon Gold 5218	16	32	22.0	10.4	2.3	3.9	2,666	125
Xeon Gold 5217	8	16	11.0	10.4	3.0	3.7	2,666	115
Xeon Gold 5215	10	20	13.8	10.4	2.5	3.4	2,666	85
Xeon Silver 4216	16	32	22.0	9.6	2.1	3.2	2,400	100
Xeon Silver 4215	8	16	11.0	9.6	2.5	3.5	2,400	85
	12	24						
Xeon Silver 4214Y	10	20	16.5	9.6	2.2	3.2	2,400	85
	8	16						
Xeon Silver 4214	12	24	16.5	9.6	2.2	3.2	2,400	85
Xeon Silver 4210	10	20	13.8	9.6	2.2	3.2	2,400	85
Xeon Silver 4208	8	16	11.0	9.6	2.1	3.2	2,400	85
Xeon Bronze 3204	6	6	8.3	9.6	1.9		2,133	85
March 2020 release	d							
Xeon Gold 6230R	26	52	35.8	10.4	2.1	4.0	2,933	150
Xeon Gold 6226R	16	32	22.0	10.4	2.9	3.9	2,933	150
Xeon Gold 6208U	16	32	22.0	10.4	2.9	3.9	2,933	150
Xeon Gold 5220R	24	48	35.8	10.4	2.2	4.0	2,666	150
Xeon Gold 5218R	20	40	27.5	10.4	2.1	4.0	2,666	125
Xeon Silver 4215R	8	16	11.0	9.6	3.2	4.0	2,400	130
Xeon Silver 4214R	12	24	16.5	9.6	2.4	3.5	2,400	100

Xeon Silver 4210R	10	20	13.8	9.6	2.4	3.2	2,400	100
Xeon Bronze 3206R	8	8	11.0	9.6	1.9		2,133	85

All processors that can be ordered with PRIMERGY TX2550 M5 support Intel Turbo Boost Technology 2.0.

This technology allows you to operate the processor with higher frequencies than the rated frequency. The "maximum turbo frequency" listed in the processor list above is the theoretical maximum frequency when there is only one active core per processor. The maximum frequency that can actually be achieved depends on the number of active cores, current consumption, power consumption, and processor temperature.

As a general rule, Intel does not guarantee that maximum turbo frequencies will be achieved. This is related to manufacturing tolerances, and the performance of each individual processor model varies from each other.

The range of difference covers the range including all of the rated frequency and the maximum turbo frequency.

The turbo function can be set in the BIOS option. Generally, Fujitsu always recommends leaving the [Turbo Mode] option set at the standard setting [Enabled], as performance is substantially increased by the higher frequencies. However, the Turbo Mode frequency depends on the operating conditions mentioned above and is not always guaranteed. The turbo frequency fluctuates in applications where AVX instructions are used intensively and the number of instructions per clock is large. If you need stable performance or want to reduce power consumption, it may be beneficial to set the [Turbo Mode] option to [Disabled] to disable the turbo function.

Suffix of Processor number shows additional feature of Xeon Processor.

The processors with M/L suffix support larger memory capacity of 2TB/socket(M-suffix) or 4.5TB/socket(L-suffix) whereas normal processors support 1TB/socket memory capacity.

The processors with S suffix are specifically designed to offer consistent performance for search workloads.

The processors with U suffix are only capable of single socket but the prices are lower than comparable normal processors with the same core count and frequency.

The processors with V suffix are specifically designed to help maximize \$/VM

The processors with Y suffix support Intel Speed Select Technology. It enables to provide 3 distinct configurations(number of active cores and frequencies) which customer can choose in BIOS option.

Specifications of Xeon Gold 5218B and Xeon Gold 5218 including core count and frequencies are the same. The difference is minor electrical specifications only.

Suffix	Additional feature
М	Support up to 2TB/socket memory
L	Support up to 4.5TB/socket memory
S	Search Optimized
U	Single Socket
V	VM Density Optimized
Y	Speed Select

Memory modules (Memory modules (since system release)								
Memory module	Capacity [GB]	Ranks	Bit width of the memory chips	Frequency [MHz]	Load Reduced	Registered	NVDIMM	ECC	
8 GB (1x8 GB) 1Rx8 DDR4-2933 R ECC	8	1	8	2,933		\checkmark		✓	
16 GB (1x16 GB) 2Rx8 DDR4-2933 R ECC	16	2	8	2,933		V		~	
16 GB (1x16 GB) 1Rx4 DDR4-2933 R ECC	16	1	4	2,933		V		✓	
32 GB (1x32 GB) 2Rx4 DDR4-2933 R ECC	32	2	4	2,933		V		✓	
64 GB (1x64 GB) 2Rx4 DDR4-2933 R ECC	64	2	4	2,933		V		√	
64 GB (1x64 GB) 4Rx4 DDR4-2933 LR ECC	64	4	4	2,933	~	V		✓	
128 GB (1x128 GB) 4Rx4 DDR4-2933 LR ECC	128	4	4	2,933	~	~		✓	
128GB (1x128GB) DCPMM-2666	128			2,666			~	~	

256GB (1x256GB) DCPMM-2666	256	2,666		✓	~
512GB (1x512GB) DCPMM-2666	512	2,666		~	~

Power supplies	Maximum number	
Modular redundant PSU	450W platinum PSU	2
	800W platinum PSU	2
	800W titanium PSU	2
	1,200W platinum PSU	2

Some components may not be available in all countries or sales regions.

Detailed technical information is available in the data sheet PRIMERGY TX2550 M5.

SPEC CPU2017

Benchmark description

SPEC CPU2017 is a benchmark which measures the system efficiency with integer and floating-point operations. It consists of an integer test suite (SPECrate 2017 Integer, SPECspeed 2017 Integer) containing 10 applications and a floating-point test suite (SPECrate 2017 Floating Point, SPECspeed 2017 Floating Point) containing 14 applications. Both test suites are extremely computing-intensive and concentrate on the CPU and the memory. Other components, such as Disk I/O and network, are not measured by this benchmark.

SPEC CPU2017 is not tied to a special operating system. The benchmark is available as source code and is compiled before the actual measurement. The used compiler version and their optimization settings also affect the measurement result.

SPEC CPU2017 contains two different performance measurement methods. The first method (SPECspeed 2017 Integer or SPECspeed 2017 Floating Point) determines the time which is required to process a single task. The second method (SPECrate 2017 Integer or SPECrate 2017 Floating Point) determines the throughput, i.e. the number of tasks that can be handled in parallel. Both methods are also divided into two measurement runs, "base" and "peak." They differ in the use of compiler optimization. When publishing the results, the base values are always used and the peak values are optional.

Benchmark	Number of single benchmarks	Arithmetics	Туре	Compiler optimization	Measurement result
SPECspeed2017_int_peak	10	integer	peak	aggressive	Speed
SPECspeed2017_int_base	10	integer	base	conservative	
SPECrate2017_int_peak	10	integer	peak	aggressive	Throughput
SPECrate2017_int_base	10	integer	base	conservative	
SPECspeed2017_fp_peak	10	floating point	peak	aggressive	Speed
SPECspeed2017_fp_base	10	floating point	base	conservative	
SPECrate2017_fp_peak	13	floating point	peak	aggressive	Throughput
SPECrate2017_fp_base	13	floating point	base	conservative	

The measurement results are the geometric average from normalized ratio values which have been determined for individual benchmarks. The geometric average - in contrast to the arithmetic average - means that there is a weighting in favor of the lower individual results. "Normalized" means that the measurement is how fast is the test system compared to a reference system. For example, value "1" was defined for the SPECspeed2017_int_base, SPECrate2017_int_base, SPECspeed2017_fp_base, and SPECrate2017_fp_base results of the reference system. A SPECspeed2017_int_base value of 2 means that the measuring system has handled this benchmark twice as fast as the reference system. A SPECrate2017_fp_base value of 4 means that the measuring system has handled this benchmark twice as fast as the reference system. A SPECrate2017_fp_base value of 4 means that the measuring system has handled this benchmark twice as fast as the reference system. A specrate2017_fp_base value of 4 means that the measuring system has handled this benchmark twice as fast as the reference system. A specrate2017_fp_base value of 4 means that the measuring system has handled this benchmark about 4/[# base copies] times faster than the reference system. "# base copies" specifies how many parallel instances of the benchmark have been executed.

Not every SPEC CPU2017 measurement is submitted by Fujitsu for publication at SPEC. This is why the SPEC web pages do not have every result. As Fujitsu archives the log files for all measurements, it is possible to prove the correct implementation of the measurements at any time.

Version: 1.5 2023-10-03

Benchmark environment

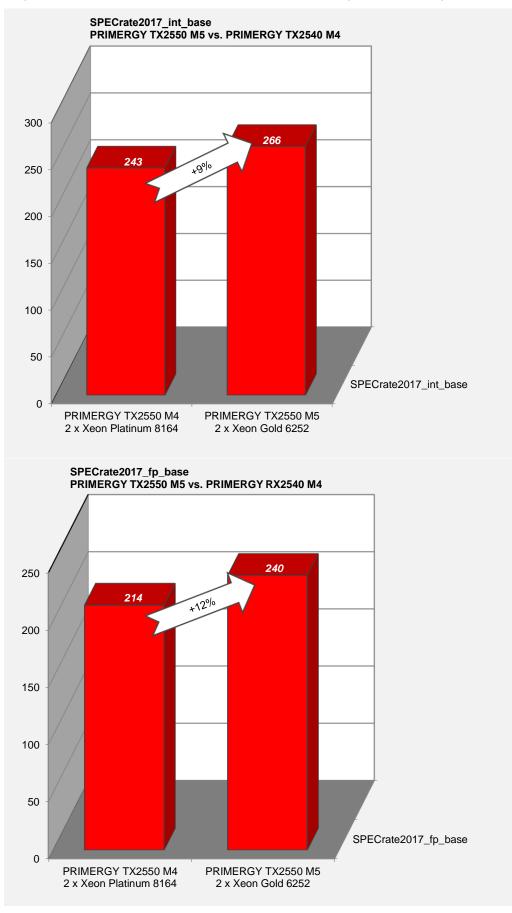
System Under Test (SUT)	
Hardware	
• Model	PRIMERGY TX2550 M5
• Processor	2nd Generation Intel Xeon Scalable Processors Family
• Memory	24 × 32 GB (1x32 GB) 2Rx4 PC4-2933Y-R
Software	
• BIOS settings	SPECrate2017_int_base: • Patrol Scrub = Disabled • DCU Ip Prefetcher = Disabled ^{*1} • DCU Streamer Prefetcher = Disabled ^{*1} • Fan Control = Full • Stale AtoS = Enable • WR CRC feature Control = Disabled • Sub NUMA Clustering = Disabled ^{*2} • Hyper-Threading = Disabled ^{*3} SPECrate2017_fp_base: • Patrol Scrub = Disabled • WR CRC feature Control = Disabled • WR CRC feature Control = Disabled * Sub NUMA Clustering = Disabled ^{*2} • Hyper-Threading = Disabled ^{*3} • Fan Control = Full *1: Xeon Bronze 3206R, Xeon Silver 4210R, Xeon Silver 4214R, Xeon Silver 4215R, Xeon Gold 5217, Xeon Gold 5215, Xeon Silver 4215, Xeon Silver 4210R, Xeon Silver 4208, Xeon Bronze 3204, Xeon Bronze 3206R, Xeon Silver 4210R, Xeon Silver 4215R
	*3: Xeon Bronze 3204, Xeon Bronze 3206R
Operating system	SUSE Linux Enterprise Server 15 4.12.14-25.28-default
• Operating system settings	Stack size set to unlimited using "ulimit -s unlimited" Kernel Boot Parameter set with : nohz_full=1-X (X: logical core number -1) SPECrate2017_fp: echo 10000000 > /proc/sys/kernel/sched_min_granularity_ns
• Compiler	SPECrate2017_int: CPU released in July 2019 C/C++: Version 19.0.1.144 of Intel C/C++ Compiler for Linux Fortran: Version 19.0.1.144 of Intel Fortran Compiler for Linux CPU released in March 2020 C/C++: Version 19.0.4.227 of Intel C/C++ Compiler for Linux Fortran: Version 19.0.4.227 of Intel Fortran Compiler for Linux SPECrate2017_fp: CPU released in July 2019

C/C++: Version 19.0.0.117 of Intel C/C++ Compiler for Linux Fortran: Version 19.0.0.117 of Intel Fortran Compiler for Linux CPU released in March 2020

C/C++: Version 19.0.4.227 of Intel C/C++ Compiler for Linux Fortran: Version 19.0.4.227 of Intel Fortran Compiler for Linux

Benchmark results

In terms of processors, the benchmark result depends primarily on the size of the processor cache, the support for Hyper-Threading, the number of processor cores, and the processor frequency. In the case of processors with Turbo mode, the number of cores, which are loaded by the benchmark, determines the maximum processor frequency that can be achieved. In the case of single-threaded benchmarks, which largely load one core only, the maximum processor frequency that can be achieved is higher than with multi-threaded benchmarks.


The results with "est." are the estimated values.

Processor	Cores	Number of Processors	SPECrate2017 int_base	SPECrate2017 fp_base
July 2019 released				
Xeon Gold 6262V	24	2	235 est.	203 est.
Xeon Gold 6252	24	2	266	240
Xeon Gold 6248	20	2	246 est.	224 est.
Xeon Gold 6244	8	2	130 est.	147 est.
Xeon Gold 6242	16	2	212 est.	203 est.
	18	2	223 est.	209 est.
Xeon Gold 6240Y	14	2	182 est.	186 est.
	8	2	114 est.	134 est.
Xeon Gold 6240	18	2	221 est.	208 est.
Xeon Gold 6238	18	2	245 est.	225 est.
Xeon Gold 6234	22	2	123 est.	137 est.
Xeon Gold 6230	20	2	219 est.	206 est.
Xeon Gold 6226	12	2	162 est.	170 est.
Xeon Gold 6222V	20	2	197 est.	184 est.
Xeon Gold 6212U	24	1	142 est.	125 est.
Xeon Gold 6210U	20	1	123 est.	113 est.
Xeon Gold 6209U	20	1	112 est.	107 est.
Xeon Gold 5222	4	2	62.2 est.	75.8 est.
Xeon Gold 5220S	18	2	197 est.	190 est.
Xeon Gold 5220	18	2	195 est.	189 est.
Xeon Gold 5218B	16	2	179 est.	177 est.
Xeon Gold 5218	16	2	179 est.	177 est.
Xeon Gold 5217	8	2	105 est.	115 est.
Xeon Gold 5215	10	2	118 est.	126 est.
Xeon Silver 4216	16	2	172 est.	167 est.
Xeon Silver 4215	8	2	94.7 est.	105 est.
	12	2	131 est.	137 est.
Xeon Silver 4214Y	10	2	109 est.	122 est.
	8	2	94 est.	110 est.
Xeon Silver 4214	12	2	131 est.	136 est.
Xeon Silver 4210	10	2	107 est.	117 est.
Xeon Silver 4208	8	2	80.7 est.	91.3 est.
Xeon Bronze 3204	6	2	38.5 est.	53.8 ^{est.}

March 2020 released

Xeon Gold 6230R	26	2	274	236
Xeon Gold 6226R	16	2	207 est.	198 est.
Xeon Gold 6208U	16	1	108 est.	104 est.
Xeon Gold 5220R	24	2	258 est.	225 est.
Xeon Gold 5218R	20	2	217 est.	198 est.
Xeon Silver 4215R	8	2	100 est.	108 est.
Xeon Silver 4214R	12	2	133 est.	143 est.
Xeon Silver 4210R	10	2	108 est.	120 est.
Xeon Bronze 3206R	8	2	50.5 est.	72 est.

The following two diagrams illustrate the throughput of the PRIMERGY TX2550 M5 in comparison to its predecessor PRIMERGY TX2550 M4, in their respective most performant configuration.

STREAM

Benchmark description

STREAM is a synthetic benchmark that has been used for many years to determine memory throughput and was developed by John McCalpin during his professorship at the University of Delaware. Today STREAM is supported at the University of Virginia, where the source code can be downloaded in either Fortran or C. STREAM continues to play an important role in the HPC environment in particular. It is for example an integral part of the HPC Challenge benchmark suite.

The benchmark is designed in such a way that it can be used both on PCs and on server systems. The unit of measurement of the benchmark is GB/s, i.e. the number of gigabytes that can be read and written per second.

STREAM measures the memory throughput for sequential accesses. These can generally be performed more efficiently than accesses that are randomly distributed on the memory, because the processor caches are used for sequential access.

Before execution the source code is adapted to the environment to be measured. Therefore, the size of the data area must be at least 12 times larger than the total of all last-level processor caches so that these have as little influence as possible on the result. The OpenMP program library is used to enable selected parts of the program to be executed in parallel during the runtime of the benchmark. This provides optimal load distribution for the available processor cores.

In the STREAM benchmark, a data area consisting of 8-byte elements is continuously copied to four operation types. Arithmetic operations are also performed on operation types other than COPY.

Arithmetics type	Arithmetics	Bytes per step	Floating-point calculation per step
COPY	a(i) = b(i)	16	0
SCALE	$a(i) = q \times b(i)$	16	1
SUM	a(i) = b(i) + c(i)	24	1
TRIAD	$a(i) = b(i) + q \times c(i)$	24	2

The throughput is output in GB/s for each type of calculation. The differences between the various values are usually only minor on modern systems. In general, only the determined TRIAD value is used as a comparison.

The measured results primarily depend on the clock frequency of the memory modules. The processors influence the arithmetic calculations.

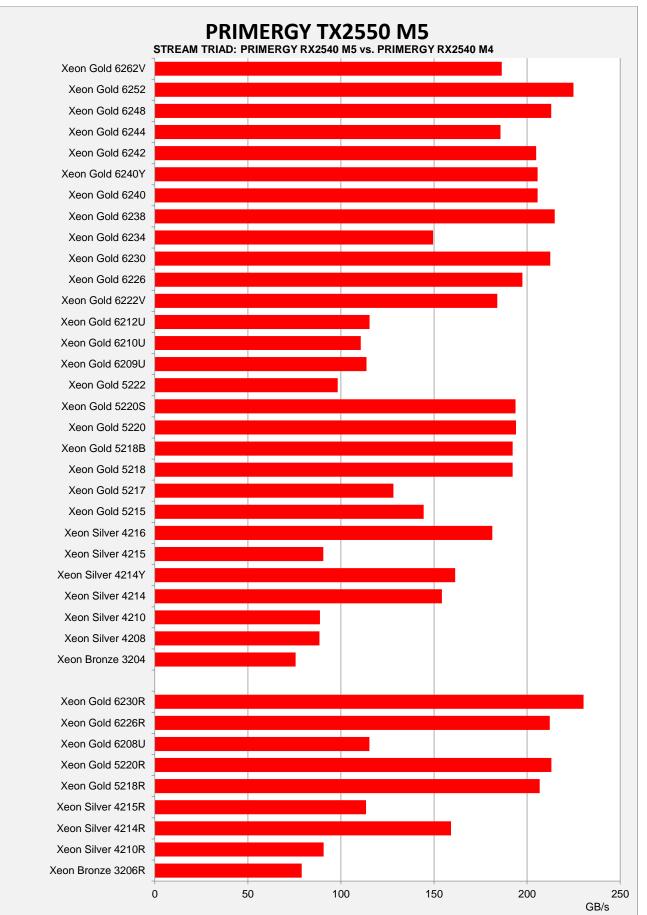
In this chapter, throughputs are indicated as a power of 10. (1 GB/s = 10⁹ Byte/s)

Benchmark environment

System Under Test (SUT)	System Under Test (SUT)					
Hardware						
• Model	PRIMERGY TX2550 M5					
• Processor	2nd Generation Intel Xeon Scalable Processors Family					
• Memory	24 × 32 GB (1x32 GB) 2Rx4 PC4-2933Y-R					
Software						
• BIOS settings	 IMC Interleaving = 1-way Override OS Energy Performance = Enabled HWPM Support = Disable Intel Virtualization Technology = Disabled Energy Performance = Performance LLC Dead Line Alloc = Disabled Stale AtoS = Enabled Sub NUMA Clustering = Disabled^{*1} WR CRC feature Control = Disabled *1: Xeon Gold 5217, Xeon Gold 5215, Xeon Silver 4215, Xeon Silver 4210, Xeon Silver 4208, Xeon Bronze 3204, Xeon Bronze 3206R, Xeon Silver 4210R, Xeon Silver 4215R 					
 Operating system 	SUSE Linux Enterprise Server 15					
• Operating system settings	Kernel Boot Parameter set with : nohz_full=1-X (X: logical core number -1) echo never > /sys/kernel/mm/transparent_hugepage/enabled run with avx512 or avx2 ^{*1} *1: Xeon Gold 5220R, Xeon Gold 5218R, Xeon Silver 4215R, Xeon Silver 4214R, Xeon Silver 4210R, Xeon Bronze 3206R					
• Compiler	CPU released in July 2019 C/C++: Version 2019.3.0.591499 of Intel C/C++ Compiler for Linux CPU released in March 2020 C/C++: Version 19.0.4.227 of Intel C/C++ Compiler for Linux					
 Benchmark 	STREAM Version 5.10					

Some components may not be available in all countries or sales regions.

Benchmark results


The results with "est." are the estimated values.

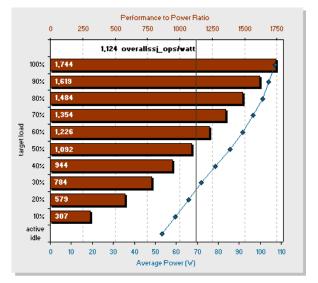

Processor	Memory	Max. Memory	Core s	Processor	Number of	TRIAD
	Frequency	Memory Bandwidth ^{*1}	5	Frequenc V	Processor	
	ENAL 1-1				S	
July 2019 released	[MHz]	[GB/s]		[GHz]		
Xeon Gold 6262V	2,933	140.8	24	1.9	2	186 est.
Xeon Gold 6252	2,933	140.8	24	2.1	2	225
Xeon Gold 6248	2,933	140.8	24	2.1	2	213 est.
Xeon Gold 6246	2,933	140.8	20	3.6	2	186 est.
Xeon Gold 6242	2,933	140.8	° 16	2.8	2	205 est.
Xeon Gold 6242	2,933	140.8	18	2.8	2	203 est. 206 est.
Veen Celd (240)					2	200 est. 212 est.
Xeon Gold 6240Y	2,933	140.8	14	2.6		179 est.
	2,933	140.8	8	2.6	2	
Xeon Gold 6240	2,933	140.8	18	2.6	2	
Xeon Gold 6238	2,933	140.8	22	2.1	2	•
Xeon Gold 6234	2,933	140.8	8	3.3	2	149 est.
Xeon Gold 6230	2,933	140.8	20	2.1	2	212 est.
Xeon Gold 6226	2,933	140.8	12	2.7	2	197 est.
Xeon Gold 6222V	2,400	140.8	20	1.8	2	184 est.
Xeon Gold 6212U	2,933	140.8	24	2.4	1	115 est.
Xeon Gold 6210U	2,933	140.8	20	2.5	1	111 est.
Xeon Gold 6209U	2,933	140.8	20	2.1	1	114 est.
Xeon Gold 5222	2,933	140.8	4	3.8	2	98.2 est.
Xeon Gold 5220S	2,666	128.0	18	2.7	2	194 est.
Xeon Gold 5220	2,666	128.0	18	2.2	2	194 est.
Xeon Gold 5218B	2,666	128.0	16	2.3	2	192 est.
Xeon Gold 5218	2,666	128.0	16	2.3	2	192 est.
Xeon Gold 5217	2,666	128.0	8	3.0	2	128 est.
Xeon Gold 5215	2,666	128.0	10	2.5	2	144 est.
Xeon Silver 4216	2,400	115.2	16	2.1	2	181 est.
Xeon Silver 4215	2,400	115.2	8	2.5	2	90.5 est.
	2,400	115.2	12	2.2	2	161 est.
Xeon Silver 4214Y	2,400	115.2	10	2.2	2	162 est.
	2,400	115.2	8	2.2	2	153 est.
Xeon Silver 4214	2,400	115.2	12	2.2	2	154 est.
Xeon Silver 4210	2,400	115.2	10	2.2	2	88.7 est.
Xeon Silver 4208	2,400	115.2	8	2.1	2	88.5 est.
Xeon Bronze 3204	2,133	102.4	6	1.9	2	75.6 est.
March 2020 release						
Xeon Gold 6230R	2,933	140.8	26	2.1	2	230
Xeon Gold 6226R	2,933	140.8	16	2.9	2	212 est.
Xeon Gold 6208U	2,933	140.8	16	2.9	- 1	115 est.
Xeon Gold 5220R	2,666	128.0	24	2.2	2	213 est.
Xeon Gold 5218R	2,666	128.0	20	2.1	2	207 est.
Xeon Silver 4215R	2,000	115.2	8	3.2	2	113 est.
Xeon Silver 4213R	2,400	115.2	12	2.4	2	159 est.

Xeon Silver 4210R	2,400	115.2	10	2.4	2	90.7	est.
Xeon Bronze 3206R	2,133	102.4	8	1.9	2	79	est.

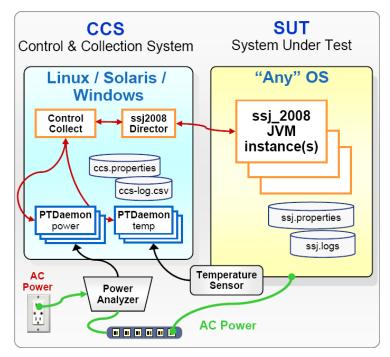
*1: Value per Processor

The following diagram shows the throughput of the PRIMERGY TX2550 M5 in comparison to its predecessor, the PRIMERGY TX2550 M4.

FUJITSU-PUBLIC Uncontrolled if printed


SPECpower_ssj2008

Benchmark description


SPECpower_ssj2008 is the first industry-standard SPEC benchmark that evaluates the power and performance characteristics of a server. With SPECpower_ssj2008 SPEC has defined standards for server power measurements in the same way they have done for performance.

The benchmark workload represents typical server-side Java business applications. The workload is scalable, multi-threaded, portable across a wide range of platforms, and easy to run. The benchmark tests CPUs, caches, the memory hierarchy, and scalability of symmetric multiprocessor systems (SMPs), as well as the implementation of Java Virtual Machine (JVM), Just In Time (JIT) compilers, garbage collection, threads, and some aspects of the operating system.

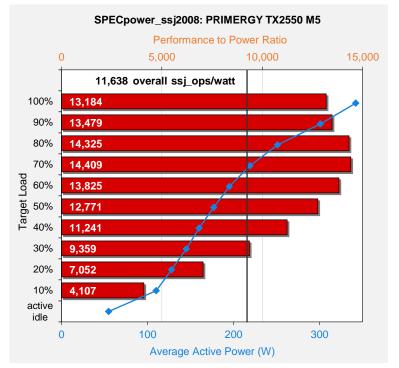
SPECpower_ssj2008 reports power consumption for servers at different performance levels — from 100% to "active idle" in 10% segments — over a set period of time. The graduated workload recognizes the fact that processing loads and power consumption on servers vary substantially over the course of days or weeks. To compute a power-performance metric across all levels, measured transaction throughputs for each segment are added together and then divided by the sum of the average power consumed for each segment. The result is a figure of merit called "overall ssj_ops/watt". This ratio provides information about the energy efficiency of the measured server. The defined measurement standard enables customers to compare it with other configurations and servers measured with

SPECpower_ssj2008. The diagram shows a typical graph of a SPECpower_ssj2008 result.

The benchmark runs on a wide variety of operating systems and hardware architectures, and does not require extensive client or storage infrastructure. The minimum equipment for SPEC-compliant testing is two networked computers, plus a power analyzer and a temperature sensor. One computer is the System Under Test (SUT) which runs one of the supported operating systems and the IVM. The IVM provides the environment required to run the SPECpower_ssj2008 workload which is implemented in Java. The other computer is a "Control & Collection System" (CCS) which controls the operation of the benchmark and captures the power, performance, and temperature readings for reporting. The diagram provides an overview of the basic structure of the benchmark configuration and the various components.

Benchmark environment

System Under Test (SUT)						
Hardware						
• Model	PRIMERGY TX2550 M5					
Processor	Intel Xeon Gold 6252 Processor					
Memory	12 ×8 GB (1 x 8 GB) 2Rx8 PC4-2666V-R					
Network interface	2 x Intel I350 Gigabit Network Connection (onboard)					
 Disk subsystem 	1 x SSD M.2 240 GB, S26361-F5706-E240					
Power Supply Unit	1 × Fujitsu Technology Solutions S26113-F574-E13					
Software						
• BIOS	R1.11.0					
BIOS settings	ASPM Support = Auto					
<u> </u>	SATA Controller = Disabled					
	Serial Port = Disabled					
	Hardware Prefetcher = Disabled					
	Adjacent Cache Line Prefetch = Disabled					
	DCU Streamer Prefetcher = Disabled					
	Intel Virtualization Technology = Disabled					
	Turbo Mode = Disabled					
	Override OS Energy Performance = Enabled					
	Energy Performance = Energy Efficient					
	DDR Performance = Energy optimized (effective memory frequency = 1866					
	MHz)					
	Autonomous C-state Support = Enabled					
	UPI Link Frequency Select = 9.6GT/s					
	Uncore Frequency Override = Nominal					
	IMC Interleaving = 1-way					
• Firmware	2.43P					
 Operating system 	SUSE Linux Enterprise Server 12 SP4 4.12.14-94.41-default					
 Operating system settings 	kernel parameter:pcie_aspm=force pcie_aspm.policy=powersave intel_pstate=disable rcu_nocbs=1-95 nohz_full=1-95 isolcpus=1-95					
settings	Benchmark started via ssh					
	modprobe cpufreq_conservative					
	cpupower frequency-setgovernor conservative					
	echo -n 94 > /sys/devices/system/cpu/cpufreq/conservative/up_threshold					
	echo -n 1 > /sys/devices/system/cpu/cpufreq/conservative/freq_step					
	echo -n 1000000 >					
	/sys/devices/system/cpu/cpufreq/conservative/sampling_rate					
	echo -n 0 > /sys/devices/system/cpu/cpufreq/conservative/ignore_nice_load					
	sysctl -w kernel.sched_migration_cost_ns=6000					
	echo -n 93 > /sys/devices/system/cpu/cpufreq/conservative/down_threshold					
	echo -n 1 >					
	/sys/devices/system/cpu/cpufreq/conservative/sampling_down_factor					
	sysctl -w kernel.sched_min_granularity_ns=10000000					
	echo always > /sys/kernel/mm/transparent_hugepage/enabled					
	powertopauto-tune					
	echo 0 > /proc/sys/kernel/nmi_watchdog					
	sysctl -w vm.swappiness=50					


	sysctl -w vm.laptop_mode=5			
• JVM	Oracle Java HotSpot 64-Bit Server VM (build 24.80-b11, mixed mode), version 1.7.0_80			
 JVM settings 	-server -Xmn1300m -Xms1550m -Xmx1550m -XX:SurvivorRatio=1			
	-XX:TargetSurvivorRatio=99 -XX:AllocatePrefetchDistance=256 - XX:AllocatePrefetchLines=4			
	-XX:LoopUnrollLimit=45 -XX:InitialTenuringThreshold=12 - XX:MaxTenuringThreshold=15			
	-XX:ParallelGCThreads=8 -XX:InlineSmallCode=3900 -XX:MaxInlineSize=270			
	-XX:FreqInlineSize=2500 -XX:+AggressiveOpts -XX:+UseLargePages			
	-XX:+UseParallelOldGC -XX:+UseHugeTLBFS -XX:+UseTransparentHugePages			

Some components may not be available in all countries or sales regions.

Benchmark results(Linux)

The PRIMERGY TX2550 M5 in SUSE Linux Enterprise Server 12 SP4 achieved the following result:

SPECpower_ssj2008 = 11,901 overall ssj_ops/watt

The adjoining diagram shows the results for the configuration described above. The red horizontal bars show the performance to power ratio in ssi ops/watt (top x-axis) for each target load level on the y-axis of the diagram. The blue line shows the run of the curve for the average power consumption (bottom x-axis) at each target load level marked with a small rhombus. The black vertical line shows the benchmark result of 11,901 overall ssj_ops/watt for the PRIMERGY TX2550 M5. This is the quotient of the sum of the transaction throughputs for each load level and the sum of the average power consumed for each measurement interval.

The following table shows the benchmark results for the throughput in ssj_ops, the power consumption in watts and the resulting energy efficiency, for each load level.

Performance		Power	Energy Efficiency
Target Load	ssj_ops	Average Power (W)	ssj_ops/watt
100%	4,507,558	342	13,184
90%	4,057,819	301	13,479
80%	3,600,840	251	14,325
70%	3,157,941	219	14,409
60%	2,701,446	195	13,825
50%	2,255,622	177	12,771
40%	1,801,241	160	11,241
30%	1,353,108	145	9,359
20%	902,810	128	7,052
10%	451,236	110	4,107
Active Idle	0	54.8	0
	Ι		∑ssj_ops / ∑power = 11,901

Disk I/O: Performance of storage media

Benchmark description

Performance measurements of disk subsystems for PRIMERGY servers are used to assess their performance and enable a comparison of the different storage connections for PRIMERGY servers. As standard, these performance measurements are carried out with a defined measurement method, which models the accesses of real application scenarios on the basis of specifications.

The essential specifications are:

- Share of random accesses / sequential accesses
- Share of read / write access types
- Block size (kiB)

Number of parallel accesses (# of outstanding I/Os)

A given value combination of these specifications is known as "load profile". The following five standard load profiles can be allocated to typical application scenarios:

Standard load profile	Access	Type of		Block size [kiB]	Application	
		read	write			
File copy	random	50%	50%	64	Copying of files	
File server	random	67%	33%	64	File server	
Database	random	67%	33%	8	Database (data transfer) Mail server	
Streaming	sequential	100%	0%	64	Database (log file), Data backup; Video streaming (partial)	
Restore	sequential	0%	100%	64	Restoring of files	

In order to model applications that access in parallel with a different load intensity the "# of Outstanding I/Os" is increased from 1 to 512 (in steps to the power of two).

The measurements of this document are based on these standard load profiles.

The main results of a measurement are:

- Throughput [MiB/s] Throughput in megabytes per second
- Transactions [IO/s] Transaction rate in I/O operations per second
- Latency [ms] Average response time in ms

The data throughput has established itself as the normal measurement variable for sequential load profiles, whereas the measurement variable "transaction rate" is mostly used for random load profiles with their small block sizes. Data throughput and transaction rate are directly proportional to each other and can be transferred to each other according to the formula

Data throughput [MiB/s]	= Transaction rate [IO/s] × Block size [MiB]
Transaction rate [IO/s]	= Data throughput [MB/s] / Block size [MiB]

This section specifies capacities of storage media on a basis of 10 (1 TB = 10^{12} bytes) while all other capacities, file sizes, block sizes and throughputs are specified on a basis of 2 (1 MiB/s = 2^{20} bytes/s).

All the details of the measurement method and the basics of disk I/O performance are described in the white paper "Basics of Disk I/O Performance".

Benchmark environment

All the measurement results discussed in this section apply for the hardware and software components listed below:

System Under Test (SUT)						
lardware							
8.5 inch Model:							
Controller: 1x PRAID CP400i							
Storage media	Category	Drive Name					
HDD	SAS HDD (SAS 12Gbps, 10k rpm) [512e]	AL15SEB18EQ *2 *3					
	SAS HDD (SAS 12Gbps, 10k rpm) [512n]	AL15SEB030N *2 *3					
	SAS HDD (SAS 12Gbps, 15k rpm) [512n]	ST300MP0006 *1 *3					
	NL-SAS HDD (SAS 12Gbps, 7.2k rpm) [512e]	HUH721212AL5204 *2*3					
	NL-SAS HDD (SAS 12Gbps, 7.2k rpm) [512n]	ST2000NM0045 *1 *3					
	BC-SATA HDD (SATA 6Gbps, 7.2k rpm) [512e]	ST6000NM0115 *1*3					
		HUH721212ALE604 *2*3					
	BC-SATA HDD (SATA 6Gbps, 7.2k rpm) [512n]	HUS722T1TALA604 *2*3					
		ST2000NM0055 *1 *3					
SSD	SATA SSD (SATA 6Gbps, Mixed Use)	MZ7KH240HAHQ *2 *3					
		MZ7KH480HAHQ *2 *3					
		MZ7KH960HAJR *2*3					
		MZ7KH1T9HAJR *2*3					
		MZ7KH3T8HALS *2*3					
	SATA SSD (SATA 6Gbps, Read Intensive)	MTFDDAK240TCB *2*3					
		MTFDDAK480TDC *2 *3					
		MTFDDAK960TDC *2 *3					
		MTFDDAK1T9TDC *2 *3					
		MTFDDAK3T8TDC *2 *3					
		MTFDDAK7T6TDC *2 *3					

Controller: Integrated PCI Express controller CPU: 2x Intel(R) Xeon(R) Gold 5222 (3.80GHz)				
	Storage media	Category	Drive Name	
	SSD	PCIe SSD AIC (Write Intensive)	SSDPED1K375GA *2*4	
			SSDPED1K750GA *2 *4	

Controller: Intel(R) C620 Standard SATA AHCI controller

Storage media	Category	Drive Name
SSD	M.2 Flash Module	MTFDDAV240TCB *2*4
		MTFDDAV480TCB *2*4

2.5 inch Model:

	RAID CP400i	Drive Name
Storage media	Category	
HDD	SAS HDD (SAS 12Gbps, 10k rpm) [512e]	AL15SEB06EQ *2 *3
	SAS HDD (SAS 12Gbps, 10k rpm) [512n]	AL15SEB030N *2 *3
	SAS HDD (SAS 12Gbps, 15k rpm) [512n]	ST300MP0006 *1 *3
	NL-SAS HDD (SAS 12Gbps, 7.2k rpm) [512n]	ST1000NX0453 *1*3
	BC-SATA HDD (SATA 6Gbps, 7.2k rpm) [512e]	ST1000NX0313 *1 *3
	BC-SATA HDD (SATA 6Gbps, 7.2k rpm) [512n]	ST2000NX0403 *1 *3
SSD	SAS SSD (SAS 12Gbps, Write Intensive)	KPM51MUG400G *2*3
		KPM51MUG800G *2*3
		KPM51MUG1T60 *2*3
	SAS SSD (SAS 12Gbps, Mixed Use)	WUSTR6440ASS204 *
		WUSTR6480ASS204 *
		WUSTR6416ASS204 *
		WUSTR6432ASS204 *2
		WUSTR6464ASS204 *
	SAS SSD (SAS 12Gbps, Read Intensive)	WUSTR1548ASS204 *2
		WUSTR1596ASS204 **
		WUSTR1519ASS204 *
		WUSTR1538ASS204 *
		WUSTR1576ASS204 *
		WUSTR1515ASS204 *
	SATA SSD (SATA 6Gbps, Mixed Use)	MZ7KH240HAHQ *2*3
		MZ7KH480HAHQ *2*3
		MZ7KH960HAJR *2 *3
		MZ7KH1T9HAJR *2 *3
		MZ7KH3T8HALS *2 *3
	SATA SSD (SATA 6Gbps, Read Intensive)	MTFDDAK240TCB *2 *3
		MTFDDAK480TDC *2*
		MTFDDAK960TDC *2 *3
		MTFDDAK1T9TDC *2*
		MTFDDAK3T8TDC *2 *3
		MTFDDAK7T6TDC *2*

Controller:

Integrated PCI Express controller CPU: 2x Intel(R) Xeon(R) Gold 5222 (3.80GHz)

Storage media	Category	Drive Name					
SSD	2.5 inch PCIe SSD (Write Intensive)	SSDPE21K750GA *2*4					
	2.5 inch PCIe SSD (Mixed Use)	SSDPE2KE016T8 *2*4					
		SSDPE2KE032T8 *2 *4					
		SSDPE2KE064T8 *2*4					
	PCIe SSD (Write Intensive)	SSDPED1K375GA *2*4					
		SSDPED1K750GA *2 *4					

Controller: Intel(R) C620 Standard SATA AHCI controller

Storage media	Category	Drive Name	
SSD	M.2 Flash Module	MTFDDAV240TCB	*2 *4
		MTFDDAV480TCB	*2 *4

*1) The operating system uses Microsoft Windows Server 2012 Standard R2.

*2) The operating system uses Microsoft Windows Server 2016 Standard.

*3) Measurement area is type 1.

*4) Measurement area is type 2.

Software					
Operating system		Microsoft Windows Server 2012 Standard R2			
		Microsoft Windows Server 2016 Standard			
Benchmark version		3.0			
RAID type		Logical drive of type RAID 0 consisting of 1 hard disk			
Stripe size		Controller default (here 64 kiB)			
Measuring tool		lometer 1.1.0			
Measurement area	Type1	RAW file system is used. The first 10% of the usable LBA area is used for sequential accesses; the next 25% for random accesses.			
	Type2	NTFS file system is used. The 32GiB area is secured for the first of the target drive, and is used for sequential access and random access.			
Total number of lometer workers		1			
Alignment of Iometer accesses		Aligned to whole multiples of 4096 bytes			

Some components may not be available in all countries / sales regions.

Benchmark results

The results shown here are intended to help you select the appropriate storage media under the aspect of disk-I/O performance. For this purpose, a single storage medium was measured in the configuration specified in the subsection <u>Benchmark environment</u>.

Controller

The measurements were made using controllers in the table below.

Storage	Storage medium	Cache	Supported	interfaces	RAID levels	
medium	medium Storage medium Cach		host	drive		
SSD/HDD	PRAID CP400i	-	8x PCIe 3.0	SATA 6G SAS 12G	0, 1, 1E, 10, 5, 50	
PCIe SSD	Integrated PCI Express controller	-	4x PCIe 3.0		-	
M.2 Flash	C620 Standard SATA AHCI controller	-	4x DMI 3.0	SATA 6G	-	

Storage media

When selecting the type and number of storage media you can move the weighting in the direction of storage capacity, performance, security or price. The following types of HDD and SSD storage media can be PRIMERGY servers:

Model type	Storage medium type	Interface	Form factor
3.5 inch Model	HDD	SAS 12G	3.5 inch, or 2.5 inch ^{*1}
		SATA 6G	3.5 inch
	SSD	SAS 12G	2.5 inch *1
		SATA 6G	2.5 inch ^{*1} , or M.2
		PCIe 3.0	Add in card
2.5 inch Model	HDD	SAS 12G	2.5 inch
		SATA 6G	2.5 inch
	SSD	SAS 12G	2.5 inch
		SATA 6G	2.5 inch, or M.2
		PCIe 3.0	2.5

*1) It is available with a 3.5 inch cage.

HDDs and SSDs are operated via host bus adapters, usually RAID controllers, with a SATA or SAS interface. The interface of the RAID controller to the chipset of the systemboard is typically PCIe or, in the case of the integrated onboard controllers, an internal bus interface of the systemboard.

Of all the storage medium types SSDs offer by far the highest transaction rates for random load profiles as well as the shortest access times. In return, however, the price per gigabyte of storage capacity is substantially higher.

Cache settings

In most cases, the cache of HDDs has a great influence on disk-I/O performance. It is frequently regarded as a security problem in case of power failure and is thus switched off. On the other hand, it was integrated by hard disk manufacturers for the good reason of increasing the write performance. For performance reasons it is therefore advisable to enable the hard disk cache. To prevent data loss in case of power failure you are recommended to equip the system with a UPS.

For the purpose of easy and reliable handling of the settings for RAID controllers and hard disks it is advisable to use the RAID-Manager software "ServerView RAID" that is supplied for PRIMERGY servers. All the cache settings for controllers and hard disks can usually be made en bloc – specifically for the application – by using the pre-defined modi "Performance" or "Data Protection". The "Performance" mode ensures the best possible performance settings for the majority of the application scenarios.

Performance values

The performance values are summarized in the following tables, in each case specifically for a single storage medium and with various access types and block sizes. The established measurement variables, as already mentioned in the subsection <u>Benchmark description</u>, are used here. Thus, transaction rate is specified for random accesses and data throughput for sequential accesses. To avoid any confusion among the measurement units the tables have been separated for the two access types.

The table cells contain the maximum achievable values. This means that each value is the maximum achievable value of the whole range of load intensities (# of Outstanding I/Os). In order to also visualize the numerical values each table cell is highlighted with a horizontal bar, the length of which is proportional to the numerical value in the table cell. All bars shown in the same scale of length have the same color. In other words, a visual comparison only makes sense for table cells with the same colored bars. Since the horizontal bars in the table cells depict the maximum achievable performance values, they are shown by the color getting lighter as you move from left to right. The light shade of color at the right end of the bar tells you that the value is a maximum value and can only be achieved under optimal prerequisites. The darker the shade becomes as you move to the left, the more frequently it will be possible to achieve the corresponding value in practice.

3.5 inch model storage media

HDDs

Capacity	Storage device	Inter face	Т	ransactions [IO/	s]	Throughput [MiB/s]		
[GB]	Storage device	interface	Database	Fileserver	Filecopy	Streaming	Restore	
1,800	AL15SEB18EQ	SAS 12G	600	512	547	258	255	
300	AL15SEB030N	SAS 12G	645	546	568	231	230	
300	ST300MP0006	SAS 12G	768	662	472	304	304	
12,000	HUH721212AL5204	SAS 12G	396	339	364	245	244	
2,000	ST2000NM0045	SAS 12G	376	336	343	206	206	
6,000	ST6000NM0115	SATA 6G	392	362	371	213	208	
12,000	HUH721212ALE604	SATA 6G	350	313	341	246	246	
1,000	HUS722T1TALA604	SATA 6G	287	264	269	201	201	
2,000	ST2000NM0055	SATA 6G	339	301	314	196	195	

SSD

Capacity	Storago dovico	Inter face		Т	ransactions [IO/s]			Throughput [MiB/s]				
[GB]	Storage device	inter face	Da	tabase	Fil	eserver	Filecopy		Streaming		Restore	
240	MZ7KH240HAHQ	SATA 6G		49,159		7,313		7,431		526		486
480	MZ7KH480HAHQ	SATA 6G		50,558		7,774		7,810		526		485
960	MZ7KH960HAJR	SATA 6G		50,647		7,793		7,916		525		485
1,920	MZ7KH1T9HAJR	SATA 6G		50,702		8,040		7,960		526		485
3,840	MZ7KH3T8HALS	SATA 6G		50,766		8,039		7,936		526		485
240	MTFDDAK240TCB	SATA 6G		18,959		3,367		4,516		487		258
480	MTFDDAK480TDC	SATA 6G		24,710		3,799		5,006		507		362
960	MTFDDAK960TDC	SATA 6G		30,152		4,625		5,553		507		440
1,920	MTFDDAK1T9TDC	SATA 6G		37,234		5,606		5,566		507		483
3,840	MTFDDAK3T8TDC	SATA 6G		41,711		6,429		6,133		504		481
7,680	MTFDDAK7T6TDC	SATA 6G		40,683		6,874		6,672		469		482
375	SSDPED1K375GA	PCle3 x4		212,118		37,121		36,123		2,460		2,197
750	SSDPED1K750GA	PCle3 x4		209,628		37,592		36,941		2,546		2,296
240	MTFDDAV240TCB	SATA 6G		20,113		3,936		5,021		510		271
480	MTFDDAV480TCB	SATA 6G		22,596		4,993		6,331		509		403

2.5 inch model storage media

HDDs

Capacity	Storage device	Inter face	т	ransactions [IO/s	5]	Throughput [MiB/s]			
[GB]	Storage device	inter face	Database	Fileserver	Filecopy	Streaming	Restore		
600	AL15SEB06EQ	SAS 12G	592	516	544	260	260		
300	AL15SEB030N	SAS 12G	645	5 <mark>46</mark>	568	231	230		
300	ST300MP0006	SAS 12G	768	662	472	304	304		
1,000	ST1000NX0453	SAS 12G	371	321	306	137	137		
1,000	ST1000NX0313	SATA 6G	324	281	288	131	131		
2,000	ST2000NX0403	SATA 6G	326	286	294	133	133		

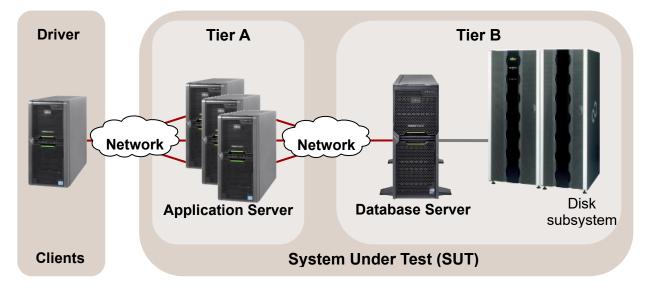
SSD

Capacity	Storage device	Inter face	T	ransactions [IO/s]	Throughp	out [MiB/s]
[GB]	Storage device	inter face	Database	Fileserver	Filecopy	Streaming	Restore
400	KPM51MUG400G	SAS 12G	84,469	13,329	13,677	1,056	1,041
800	KPM51MUG800G	SAS 12G	99,728	14,549	18,049	1,056	1,042
1,600	KPM51MUG1T60	SAS 12G	108,428	17,243	19,634	1,057	1,042
400	WUSTR6440ASS204	SAS 12G	83,427	14,459	13,924	1,073	626
800	WUSTR6480ASS204	SAS 12G	94,899	22,414	21,187	1,073	1,008
1,600	WUSTR6416ASS204	SAS 12G	97,107	24,053	22,802	1,073	1,029
3,200	WUSTR6432ASS204	SAS 12G	106,745	23,975	22,793	1,073	1,030
6,400	WUSTR6464ASS204	SAS 12G	111,695	23,911	22,639	1,073	1,030
480	WUSTR1548ASS204	SAS 12G	77,846	11,663	9,904	1,055	554
960	WUSTR1596ASS204	SAS 12G	88,384	18,834	16,636	1,067	965
1,920	WUSTR1519ASS204	SAS 12G	89,397	21,635	21,597	1,073	1,030
3,840	WUSTR1538ASS204	SAS 12G	99,644	23,727	22,831	1,073	1,030
7,680	WUSTR1576ASS204	SAS 12G	106,933	23,688	22,644	1,073	1,030
15,360	WUSTR1515ASS204	SAS 12G	107,687	23,590	22,686	1,073	1,029
240	MZ7KH240HAHQ	SATA 6G	49,159	7,313	7,431	526	486
480	MZ7KH480HAHQ	SATA 6G	50,558	7,774	7,810	526	485
960	MZ7KH960HAJR	SATA 6G	50,647	7,793	7,916	525	485
1,920	MZ7KH1T9HAJR	SATA 6G	50,702	8,040	7,960	526	485
3,840	MZ7KH3T8HALS	SATA 6G	50,766	8,039	7,936	526	485
240	MTFDDAK240TCB	SATA 6G	18,959	3,367	4,516	487	258
480	MTFDDAK480TDC	SATA 6G	24,710	3,799	5,006	507	362
960	MTFDDAK960TDC	SATA 6G	30,152	4,625	5,553	507	440
1,920	MTFDDAK1T9TDC	SATA 6G	37,234	5,606	5,566	507	483
3,840	MTFDDAK3T8TDC	SATA 6G	41,711	6,429	6,133	504	481
7,680	MTFDDAK7T6TDC	SATA 6G	40,683	6,874	6,672	469	482
750	SSDPE21K750GA	PCle3 x4	214,231	37, <mark>611</mark>	36, <mark>957</mark>	2,546	2,295
1,600	SSDPE2KE016T8	PCle3 x4	135,500	41,0 <mark>66</mark>	37,080	3,213	1,917
3,200	SSDPE2KE032T8	PCle3 x4	136,782	48,210	45,348	3,209	2,800
6,400	SSDPE2KE064T8	PCle3 x4	192,245	51,767	51,438	3,205	3,048
375	SSDPED1K375GA	PCle3 x4	212,118	<u>37,</u> 121	36,123	2,460	2,197
750	SSDPED1K750GA	PCle3 x4	209,628	37,592	36, <mark>941</mark>	2,546	2,296
240	MTFDDAV240TCB	SATA 6G	19,773	3,844	4,968	487	258
480	MTFDDAV480TCB	SATA 6G	22,258	4,935	6,294	509	403

OLTP-2

Benchmark description

OLTP stands for Online Transaction Processing. The OLTP-2 benchmark is based on the typical application scenario of a database solution. In OLTP-2 database access is simulated and the number of transactions achieved per second (tps) determined as the unit of measurement for the system.


In contrast to benchmarks such as SPECint and TPC-E, which were standardized by independent bodies and for which adherence to the respective rules and regulations are monitored, OLTP-2 is an internal benchmark of Fujitsu. OLTP-2 is based on the well-known database benchmark TPC-E. OLTP-2 was designed in such a way that a wide range of configurations can be measured to present the scaling of a system with regard to the CPU and memory configuration.

Even if the two benchmarks OLTP-2 and TPC-E simulate similar application scenarios using the same load profiles, the results cannot be compared or even treated as equal, as the two benchmarks use different methods to simulate user load. OLTP-2 values are typically similar to TPC-E values. A direct comparison, or even referring to the OLTP-2 result as TPC-E, is not permitted, especially because there is no price-performance calculation.

Further information can be found in the document **Benchmark Overview OLTP-2**.

Benchmark environment

The typical measurement set-up is illustrated below:

All OLTP-2 results were Calculated based on the configuration of the next following pages of PRIMERGY RX2540 M5

Database Server (Tier B)							
Hardware							
• Model	PRIMERGY TX2550 M5						
Processor	2nd Generation Intel [®] Xeon [®] Scalable Processors Family						
Memory	1 processor: 12 ×64 GB (1x64 GB) 2Rx4 DDR4-2933 ECC 2 processors:24 ×64 GB (1x64 GB) 2Rx4 DDR4-2933 ECC						
 Network interface 	1 × Dual Port onboard LAN 10 Gb/s						
 Disk subsystem 	PRIMERGY TX2550 M5:Onboard RAID controller PRAID EP420i						
	2 × 300 GB 10k rpm SAS Drive, RAID 1 (OS),						
	6 × 1.6 TB SSD, RAID 10 (LOG)						
	4 × 1.6 TB SSD, RAID 10 (temp)						
	5 × PRAID EP540e						
	5 × JX40 S2:9 × 1.6 TB SSD Drive each, RAID5 (data)						
Software							
• BIOS	Version R1.2.0						
Operating system	Microsoft Windows Server 2016 Standard + KB4462928						
 Database 	Microsoft SQL Server 2017 Enterprise + KB4341265						

Application Server (Tier A)

Hardware

Haluwale					
• Model	1 × PRIMERGY RX2530 M4				
Processor	2 × Xeon Platinum 8180				
Memory	192 GB, 2666 MHz Registered ECC DDR4				
Network interface	1 × Dual Port onboard LAN 10 Gb/s 1 × Dual Port LAN 1 Gb/s				
 Disk subsystem 	2 × 300 GB 10k rpm SAS Drive				
Software					
 Operating system 	Microsoft Windows Server 2016 Standard				

Client	
Hardware	
• Model	1 × PRIMERGY RX2530 M2
Processor	2 × Xeon E5-2667 v4
Memory	128 GB, 2400 MHz registered ECC DDR4
 Network interface 	1 × onboard Quad Port LAN 1 Gb/s
 Disk subsystem 	1 × 300 GB 10k rpm SAS Drive
Software	
 Operating system 	Microsoft Windows Server 2012 R2 Standard
Benchmark	OLTP-2 Software EGen version 1.14.0

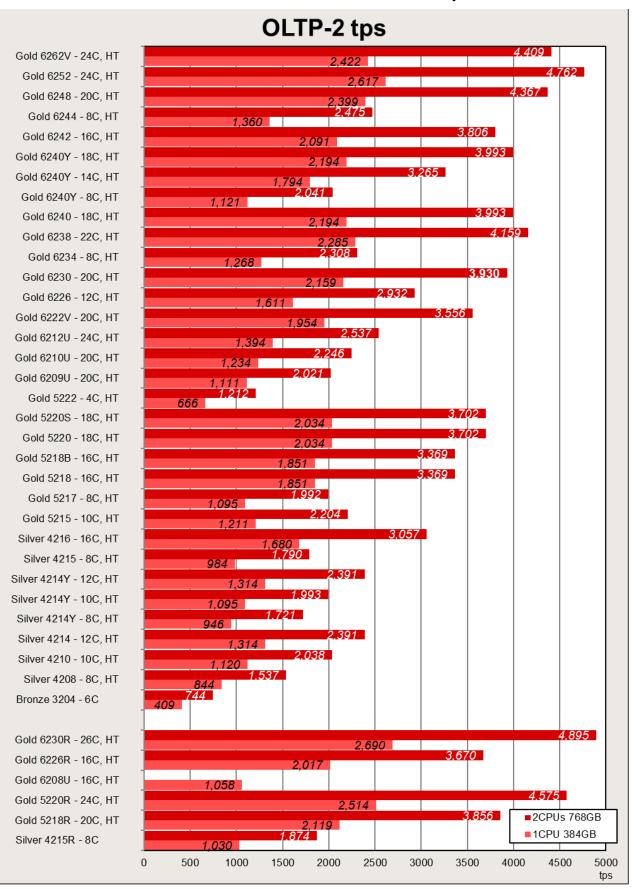
Some components may not be available in all countries / sales regions.

Benchmark results

Database performance greatly depends on the configuration options with CPU, memory and on the connectivity of an adequate disk subsystem for the database. In the following scaling considerations for the processors we assume that both the memory and the disk subsystem has been adequately chosen and is not a bottleneck.

A guideline in the database environment for selecting main memory is that sufficient quantity is more important than the speed of the memory accesses. This why a configuration with a total memory of 1536 GB was considered for the measurements with two processors and a configuration with a total memory of 768 GB for the measurements with one processor. Both memory configurations have memory access of 2933 MHz.

The result with "est." are the estimated values.


Processor	Cores	Threads	2CPU	1CPU
			Score	Score
2019 年 4 月発表				
Xeon Gold 6262V	24	48	4,409	est. 2,422 est.
Xeon Gold 6252	24	48	4,762	est. 2,617 est.
Xeon Gold 6248	20	40	4,367	est. 2,399 est.
Xeon Gold 6244	8	16	2,475	est. 1,360 est.
Xeon Gold 6242	16	32	0,000	est. 2,091 est.
	18	36	3,993	est. 2,194 est.
Xeon Gold 6240Y	14	28	0,-00	est. 1,794 est.
	8	16	2,041	est. 1,121 est.
Xeon Gold 6240	18	36	3,993	est. 2,194 est.
Xeon Gold 6238	22	44	4,159	est. 2,285 est.
Xeon Gold 6234	8	16	2,308	est. 1,268 est.
Xeon Gold 6230	20	40	3,930	est. 2,159 est.
Xeon Gold 6226	12	24	2,932	est. 1,611 est.
Xeon Gold 6222V	20	40	3,556	est. 1,954 est.
Xeon Gold 6212U	24	48	2,537	est. 1,394 est.
Xeon Gold 6210U	20	40	2,246	est. 1,234 est.
Xeon Gold 6209U	20	40	2,021	est. 1,111 est.
Xeon Gold 5222	4	8	1,212	est. 666 est.
Xeon Gold 5220S	18	36	3,702	est. 2,034 est.
Xeon Gold 5220	18	36	3,702	est. 2,034 est.
Xeon Gold 5218B	16	32	3,369	est. 1,851 est.
Xeon Gold 5218	16	32	3,369	est. 1,851 est.
Xeon Gold 5217	8	16	1,992	est. 1,095 est.
Xeon Gold 5215	10	20	2,204	est. 1,211 est.
Xeon Silver 4216	16	32	3,057	est. 1,680 est.
Xeon Silver 4215	8	16	1,790	est. 984 est.
	12	24	2,391	est. 1,314 est.
Xeon Silver 4214Y	10	20	1,993	est. 1,095 est.
	8	16	1,721	est. 946 est.
Xeon Silver 4214	12	24	2,391	est. 1,314 est.
Xeon Silver 4210	10	20	2,038	est. 1,120 est.
Xeon Silver 4208	8	16	1,537	est. 844 est.
Xeon Bronze 3204	6	6	744	est. 409 est.
2020年3月発表				
Xeon Gold 6230R	26	52	4,895	est. 2,690 est.

Performance Report PRIMERGY TX2550 M5

Version: 1.5 2023-10-03

Xeon Gold 5220R 24 48 4,575 est. 2,514 est.	Xeon Gold 6226R	16	32	3,670	est.	2,017	est.
	Xeon Gold 6208U	16	32			1,058	est.
Xeon Gold 5218R 20 40 3,856 est. 2,119 est.	Xeon Gold 5220R	24	48	4,575	est.	2,514	est.
	Xeon Gold 5218R	20	40	3,856	est.	2,119	est.
Xeon Silver 4215R 8 16 1,874 est. 1,030 est.	Xeon Silver 4215R	8	16	1,874	est.	1,030	est.

The following diagram shows the OLTP-2 transaction rates that can be achieved with one and two processors of the 2nd Generation Intel[®] Xeon[®] Processor Scalable Family.

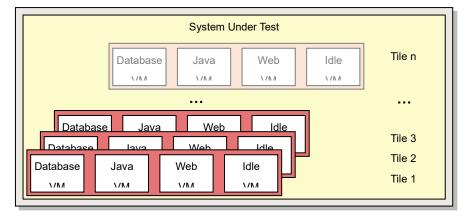
It is evident that a wide performance range is covered by the variety of released processors. If you compare the OLTP-2 value of the processor with the lowest performance (Xeon Bronze 3204) with the value of the processor with the highest performance (Xeon Platinum 8280), the result is an 8-fold increase in performance.

The features of the processors are summarized in the section "Technical data".

The relatively large performance differences between the processors can be explained by their features. The values scale on the basis of the number of cores, the size of the L3 cache and the CPU clock frequency and as a result of the features of Hyper-Threading and turbo mode, which are available in most processor types. Furthermore, the data transfer rate between processors ("UPI Speed") also determines the performance.

Within a group of processors with the same number of cores, scaling can be seen via the CPU clock frequency.

vServCon


Benchmark description

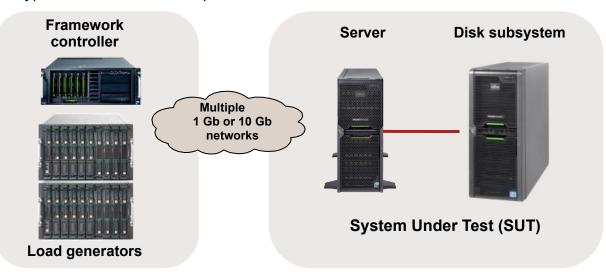
vServCon is a benchmark used by Fujitsu to compare server configurations with hypervisor with regard to their suitability for server consolidation. This allows both the comparison of systems, processors and I/O technologies as well as the comparison of hypervisors, virtualization forms, and additional drivers for virtual machines.

vServCon is not a new benchmark in the true sense of the word. It is more a framework that combines already established benchmarks (or in modified form) as workloads in order to reproduce the load of a consolidated and virtualized server environment. Three proven benchmarks are used which cover the application scenarios database, application server, and web server.

Application scenario	Benchmark	No. of logical CPU cores	Memory
Database	Sysbench (adapted)	2	1.5 GB
Java application server	SPECjbb (adapted, with 50% - 60% load)	2	2 GB
Web server	WebBench	1	1.5 GB

Each of the three application scenarios is allocated to a dedicated virtual machine (VM). A fourth machine, the so-called idle VM, is added to these. These four VMs make up a "tile". Depending on the performance capability of the underlying server hardware, you may as part of a measurement also have to start several identical tiles in parallel in order to achieve a maximum performance score.

Each of the three vServCon application scenarios provides a specific benchmark result in the form of application-specific transaction rates for the respective VM. In order to derive a normalized score, the individual benchmark result for one tile is put in relation to the respective result of a reference system. The resulting relative performance value is then suitably weighted and finally added up for all VMs and tiles. The outcome is a score for this tile number.


As a general rule, start with one tile, and this procedure is performed for an increasing number of tiles until no further significant increase in this vServCon score occurs. The final vServCon score is then the maximum of the vServCon scores for all tile numbers. This score thus reflects the maximum total throughput that can be achieved by running the mix defined in vServCon that consists of numerous VMs up to the possible full utilization of CPU resources. This is why the measurement environment for vServCon measurements is designed in such a way that only the CPU is the limiting factor and that no limitations occur as a result of other resources.

The progression of the vServCon scores for the tile numbers provides useful information about the scaling behavior of the "System under Test".

A detailed description of vServCon is in the document: <u>Benchmark Overview vServCon</u>.

Benchmark environment

The typical measurement set-up is illustrated below:

System Under Test (SUT)
Hardware

Processor	2nd Generation Intel [®] Xeon [®] Scalable Processors Family
Memory	24 × 32 GB (1x32 GB) 2Rx4 PC4-2933Y-R
Network interface	2 × Intel Ethernet Controller X710 for 10GbE SFP+
 Disk subsystem 	1 × dual-channel FC controller Emulex LPe160021
	LINUX/LIO based flash storage system
Software	
 Operating system 	VMware ESXi 6.7 EP06 Build 11675023

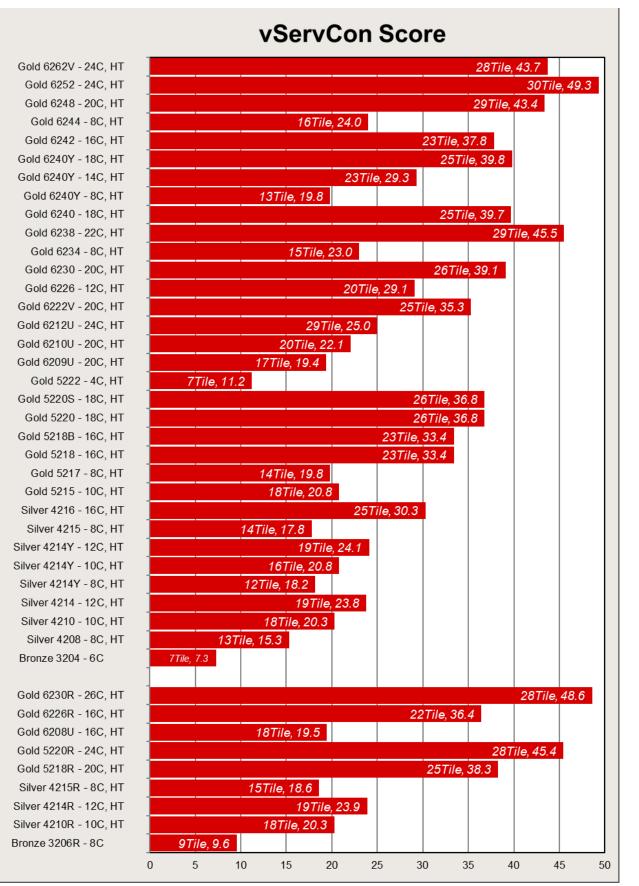
Load generator (incl. Framework controller)					
Hardware (Share	Hardware (Shared)				
• Enclosure	5 × PRIMERGY RX2530 M2				
Hardware					
Processor	2 × XeonE5-2683 v4				
Memory	128 GB				
Network interface	3 × 1 Gbit LAN				
Software					
• Operating system	VMware ESXi 6.0.0 U2 Build 3620759				

Load generator VM (on various servers)				
Hardware				
Processor	1 × logical CPU			
Memory	4,048 MB			
 Network interface 	2 × 1 Gbit/s LAN			
Software				
 Operating system 	Microsoft Windows Server 2008 Standard Edition 32 bit			

Some components may not be available in all countries or sales regions.

Benchmark results

The PRIMERGY dual-socket rack and tower systems dealt with here are based on processors of the Intel[®] Xeon[®] Processor Scalable Family. The features of the processors are summarized in the section "Technical data".


The available processors of these systems with their results can be seen in the following table.

The result with "est." are the estimated values.

Processor	Cores	Threads	Number of Processors	#Tiles		Score	
April 2019 released							
Xeon Gold 6262V	24	48	2	28	est.	43.7	est.
Xeon Gold 6252	24	48	2	30		49.3	
Xeon Gold 6248	20	40	2	29		43.4	
Xeon Gold 6244	8	16	2	16		24	
Xeon Gold 6242	16	32	2	23	est.	37.8	est.
	18	36	2	25		39.8	
Xeon Gold 6240Y	14	28	2	23		29.3	
	8	16	2	13		19.8	
Xeon Gold 6240	18	36	2	25	est.	39.7	est.
Xeon Gold 6238	22	44	2	29	est.	45.5	est.
Xeon Gold 6234	8	16	2	15	est.	23	est.
Xeon Gold 6230	20	40	2	26	est.	39.1	est.
Xeon Gold 6226	12	24	2	20	est.	29.1	est.
Xeon Gold 6222V	20	40	2	25	est.	35.3	est.
Xeon Gold 6212U	24	48	1	29	est.	25	est.
Xeon Gold 6210U	20	40	1	20	est.	22.1	est.
Xeon Gold 6209U	20	40	1	17	est.	19.4	est.
Xeon Gold 5222	4	8	2	7	est.	11.2	est.
Xeon Gold 5220S	18	36	2	26	est.	36.8	est.
Xeon Gold 5220	18	36	2	26	est.	36.8	est.
Xeon Gold 5218B	16	32	2	23	est.	33.4	est.
Xeon Gold 5218	16	32	2	23	est.	33.4	est.
Xeon Gold 5217	8	16	2	14	est.	19.8	est.
Xeon Gold 5215	10	20	2	18	est.	20.8	est.
Xeon Silver 4216	16	32	2	25	est.	30.3	est.

Xeon Silver 4215	8	16	2	14	est.	17.8	est.
	-						
	12	24	2	19	est.	24.1	est.
Xeon Silver 4214Y	10	20	2	16	est.	20.8	est.
	8	16	2	12	est.	18.2	est.
Xeon Silver 4214	12	24	2	19	est.	23.8	est.
Xeon Silver 4210	10	20	2	18	est.	20.3	est.
Xeon Silver 4208	8	16	2	13	est.	15.3	est.
Xeon Bronze 3204	6	6	2	7	est.	7.3	est.
March 2020 released							
Xeon Gold 6230R	26	52	2	28	est.	48.6	est.
Xeon Gold 6226R	16	32	2	22	est.	36.4	est.
Xeon Gold 6208U	16	32	1	18	est.	19.5	est.
Xeon Gold 5220R	24	48	2	28	est.	45.4	est.
Xeon Gold 5218R	20	40	2	25	est.	38.3	est.
Xeon Silver 4215R	8	16	2	15	est.	18.6	est.
Xeon Silver 4214R	12	24	2	19	est.	23.9	est.
Xeon Silver 4210R	10	20	2	18	est.	20.3	est.
Xeon Bronze 3206R	8	8	2	9	est.	9.6	est.

The following diagram compares the virtualization performance values that can be achieved with the processors reviewed here.

The relatively large performance differences between the processors can be explained by their features. The values scale on the basis of the number of cores, the size of the L3 cache and the CPU clock frequency and as a result of the features of Hyper-Threading and turbo mode, which are available in most processor types. Furthermore, the data transfer rate between processors ("UPI Speed") also determines performance.

A low performance can be seen in the Xeon Bronze 3204 processor, as they have to manage without Hyper-Threading (HT) and turbo mode (TM). In principle, these weakest processors are only to a limited extent suitable for the virtualization environment.

Within a group of processors with the same number of cores scaling can be seen via the CPU clock frequency.

As a matter of principle, the memory access speed also influences performance. A guideline in the virtualization environment for selecting main memory is that sufficient quantity is more important than the speed of the memory accesses. The vServCon scaling measurements presented here were all performed with a memory access speed – depending on the processor type – of at most 2933 MHz.

Literature

PRIMERGY Servers

https://www.fujitsu.com/global/products/computing/servers/primergy/

PRIMERGY TX2550 M5

This White Paper:

https://docs.ts.fujitsu.com/dl.aspx?id=e9e8326c-5fe9-4900-b039-411ea99c5779

https://docs.ts.fujitsu.com/dl.aspx?id=d29851e1-76d5-4780-b52d-ca04f6883f42

Data sheet

https://docs.ts.fujitsu.com/dl.aspx?id=e6102f2f-76da-4673-909c-c1d191ce2b31

PRIMERGY Performance

https://www.fujitsu.com/global/products/computing/servers/primergy/benchmarks/

SPEC CPU2017

https://www.spec.org/osg/cpu2017

Benchmark Overview SPECcpu2017

https://docs.ts.fujitsu.com/dl.aspx?id=20f1f4e2-5b3c-454a-947f-c169fca51eb1

STREAM

https://www.cs.virginia.edu/stream/

SPECpower_ssj2008

https://www.spec.org/power_ssj2008

Benchmark Overview SPECpower_ssj2008

https://docs.ts.fujitsu.com/dl.aspx?id=166f8497-4bf0-4190-91a1-884b90850ee0

OLTP-2

Benchmark Overview OLTP-2

https://docs.ts.fujitsu.com/dl.aspx?id=e6f7a4c9-aff6-4598-b199-836053214d3f

vServCon

Benchmark Overview vServCon https://docs.ts.fujitsu.com/dl.aspx?id=b953d1f3-6f98-4b93-95f5-8c8ba3db4e59

Document change history

Version	Date	Description
1.5	2023-10-03	Updated:
		• ·New Visual Identity format
1.4	2021-07-28	Updated:
		 Contact information and URLs Updated to the latest one Minor correction
1.3	2020-05-29	Updated:
		• Technical data, STREAM Fixed typo in processor specifications
1.2	2020-04-24	Updated:
		 Technical data Added 2nd Generation Intel Xeon Processor Scalable Family SPECcpu2017, OLTP-2, vServCon, STREAM Measured or calculated additionally with 2nd Generation Intel Xeon Processor Scalable Family
1.1	2019-10-04	New:
		 SPECpower_ssj2008 Measured with Intel Xeon Gold 6252 Disk I/O: Performance of storage media Results for 2.5" and 3.5" storage media STREAM Measured with 2nd Generation Intel Xeon Processor Scalable Family
1.0	2019-04-30	New:
		 Technical data SPECcpu2017 Measured with 2nd Generation Intel Xeon Processor Scalable Family OLTP-2 Calculated with 2nd Generation Intel Xeon Processor Scalable Family vServCon Calculated with 2nd Generation Intel Xeon Processor Scalable Family

Contact Fujitsu Web site: https://www.fujitsu.com PRIMERGY Performance and Benchmarks mailto:fj-benchmark@dl.jp.fujitsu.com

© Fujitsu 2023. All rights reserved. Fujitsu and Fujitsu logo are trademarks of Fujitsu Limited registered in many jurisdictions worldwide. Other product, service and company names mentioned herein may be trademarks of Fujitsu or other companies. This document is current as of the initial date of publication and subject to be changed by Fujitsu without notice. This material is provided for information purposes only and Fujitsu assumes no liability related to its use.